Orbits of massive particles in a spherically symmetric gravitational field in view of cosmological constant

Бесплатный доступ

In this paper we present the results of a theoretical study of the trajectories of massive particles in the K¨ottler metric in view of the cosmological constant Λ. For both negative and positive signs of Λ a classification of trajectories is proposed, with entries based on different solutions of the trajectory equation, obtained by the expansion of the corresponding algebraic curve in Puiseux series. We also provide some specific types of trajectories which correspond to different values of the cosmological constant. In the case of negative values of the cosmological constant its upper limit is estimated from the galaxy rotation curves.

Еще

General relativity, cosmological constant, orbits

Короткий адрес: https://sciup.org/142240755

IDR: 142240755   |   DOI: 10.17238/issn2226-8812.2023.3-4.218-228

Список литературы Orbits of massive particles in a spherically symmetric gravitational field in view of cosmological constant

  • Einstein A. Kosmologische Betrachtungen zur allgemeinen Relativit¨atstheorie. Sitzungsberichte der K¨oniglich Preussischen Akademie der Wissenschaften, 1917, pp. 142–152.
  • K¨ottler F. ¨Uber die physikalischen Grundlagen der Einsteinschen Gravitationstheorie. Annalen der Physik, 1918, vol. 361, pp. 401-462
  • Landau L. D., Lifschits E. M. The Classical Theory of Fields, Course of Theoretical Physics, Vol.2. Oxford, Pergamon Press, 1975.
  • Planck Collaboration. Planck 2015 results - XIII. Cosmological parameters A&A, 2016, vol. 594, p. A13. doi: 10.1051/0004-6361/201525830
  • Aryal B., Pandey R., Baral N., Khanal U., Saurer W. Estimation of mass and cosmological constant of nearby spiral galaxies using galaxy rotation curve. 2013, arXiv:1307.1824 [astro-ph.CO]
  • Farnes J. S. A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation within a Modified ΛCDM Framework. A&A, 2016, vol. 620, p. A92. doi: 10.1051/0004-6361/201832898
  • Zakharov A. F. Are signatures of anti-de-Sitter black hole at the Galactic Center? arXiv e-prints, 2014, arXiv:1407.2591. doi: 10.48550/arXiv.1407.2591
  • Cruz N., Olivarez M., Villanueva J. R. The golden ratio in Schwarzschild–Kottler black holes. The European Physical Journal C, 2017, vol. 77, no. 2. doi: 10.1140/epjc/s10052-017-4670-7
  • Simpson F., Peacock J., Heavens A. On lensing by a cosmological constant. Monthly Notices of the Royal Astronomical Society, 2010, vol. 402, no. 3, pp. 2009–2016. doi: 10.1111/j.1365-2966.2009.16032.x
  • Ishak M., Rindler W., Dossett J. More on lensing by a cosmological constant. Monthly Notices of the Royal Astronomical Society, 2010, vol. 403, no. 4, pp. 2152-2156. doi: 10.1111/j.1365-2966.2010.16261.x
  • Ishak M., Rindler W. The relevance of the cosmological constant for lensing. General Relativity and Gravitation, 2010, vol. 42, no. 9, pp. 2247–2268. doi: 10.1007/s10714-010-0973-9
  • Arakida H., Kasai M. Effect of the cosmological constant on the bending of light and the cosmological lens equation. Physical Review D, 2012, vol. 85, no. 2. doi: 10.1103/physrevd.85.023006
  • Lake K. Bending of light and the cosmological constant. Physical Review D, 2002, vol. 65, no. 8 doi: 10.1103/physrevd.65.087301
  • Ono T., Suzuki T., Fushimi N., Yamada K., Asada H. Application of Sturm’s theorem to marginal stable circular orbits of a test body in spherically symmetric and static spacetimes. 2015, arXiv:1508.00101 [gr-qc]
  • Solanki R. Kottler spacetime in isotropic static coordinates. Classical and Quantum Gravity, 2021, vol. 39, no. 1, p. 015015. doi: 10.1088/1361-6382/ac3aa0
  • Chru´sciel P., Simon W. Towards the classification of static vacuum spacetimes with negative cosmological constant. Journal of Mathematical Physics, 2001, vol. 42, no. 4, pp. 1779–1817. doi: 10.1063/1.1340869
  • Gibbons G. W. Anti-de-Sitter spacetime and its uses. 2011, arXiv:1110.1206 [hep-th]
  • Xiaoshen W. A Simple Proof of Descartes’s Rule of Signs. The American Mathematical Monthly, 2004, vol. 111, no. 6, pp. 525-526. doi: 10.1080/00029890.2004.11920108
  • Byrd P.F., Friedman M.D. Handbook of Elliptic Integrals for Engineers and Scientists. Springler Berlin Heidelberg, 2012.
  • Willis N., Didier A., Sonnanburg K. How to compute Puiseux expansion. 2008, arXiv:0807.4674 [math.AG]
  • Wall C. T. C. Singular Points of Plane Curves, London Mathematical Society Student Texts. Cambridge University Press, 2004. doi: 10.1017/CBO9780511617560
  • Goldstein H. Classical Mechanics. Addison-Wesley Publishing Company, 1980.
Еще
Статья научная