Oscillation suppression of pedestrian overpasses

Автор: Shmelev Gennady Nikolaevich, Eremeev Daniil Valerievich, Eremeev Valery Pavlovich, Eremeev Pavel Valerievich

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 5 (103), 2022 года.

Бесплатный доступ

The objects of research are pedestrian overpasses. The purpose of this work is to analyze the issues of suppression of such overpasses from oscillation caused by movement of trains and crowds. There are many ways to suppress oscillation, including increasing the longitudinal stiffness, introducing an additional connection, and using elastic or viscoelastic dampers. Problems arise when determining the need for measures to suppress oscillation in particular cases. Method. The need for suppression is determined for a pedestrian overpass with a span of 44.6 m, which is tested to determine the natural vibration frequency and the logarithmic decrement of attenuation. A comparative analysis of different solutions for oscillation suppression is carried out. A computational model of a pedestrian overpass based on the finite element method is developed. The dynamic impact from the crowd is set as a time - force function, based on the condition that 12.5% of pedestrians move synchronously. The possibility of simplifying the design scheme by replacing the base and supports with boundary conditions is determined. The dynamic influence of a train on a pedestrian overpass is studied. The load from the train is set by the time-force function and the displacement equation. Three different cases of loading from the train are studied, varying on weight and the number of wheels. Results. A comparative analysis of oscillation damping measures shows that the most effective solution is to introduce a viscoelastic damper. This way, it is possible to reduce the mean square acceleration of oscillations by 8.4 times to the required values, with the lowest material consumption.

Еще

Pedestrian overpasses, dynamics, oscillation, suppression, dampers, construction

Короткий адрес: https://sciup.org/143179858

IDR: 143179858   |   DOI: 10.4123/CUBS.103.1

Список литературы Oscillation suppression of pedestrian overpasses

  • Bedon, C. Diagnostic analysis and dynamic identification of a glass suspension footbridge via on-site vibration experiments and FE numerical modelling. Composite Structures. 2019. 216. DOI:10.1016/j.compstruct.2019.03.005.
  • Chróścielewski, J., Miśkiewicz, M., Pyrzowski, Ł., Rucka, M., Sobczyk, B., Wilde, K. Modal properties identification of a novel sandwich footbridge – Comparison of measured dynamic response and FEA. Composites Part B: Engineering. 2018. 151. DOI:10.1016/j.compositesb.2018.06.016.
  • Bedon, C., Bergamo, E. Vibration experiments for diagnostic investigations on a glass suspension footbridge. Vibroengineering Procedia. 2019. 24. DOI:10.21595/vp.2019.20612.
  • Qin, S., Zhou, Y.L., Kang, J. Footbridge Serviceability Analysis: From System Identification to Tuned Mass Damper Implementation. KSCE Journal of Civil Engineering. 2019. 23(2). DOI:10.1007/s12205-018-0985-7.
  • Wang, D., Wu, C., Zhang, Y., Li, S. Study on vertical vibration control of long-span steel footbridge with tuned mass dampers under pedestrian excitation. Journal of Constructional Steel Research. 2019. 154. DOI:10.1016/j.jcsr.2018.11.021.
  • Miguel, L.F.F., Fadel Miguel, L.F., Lopez, R.H. A firefly algorithm for the design of force and placement of friction dampers for control of man-induced vibrations in footbridges. Optimization and Engineering. 2015. 16(3). DOI:10.1007/s11081-014-9269-3.
  • Newland, D.E. Pedestrian excitation of bridges. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2004. 218(5). DOI:10.1243/095440604323052274.
  • Bocian, M., Macdonald, J.H.G., Burn, J.F. Biomechanically Inspired Modeling of Pedestrian-Induced Vertical Self-Excited Forces. Journal of Bridge Engineering. 2013. 18(12). DOI:10.1061/(asce)be.1943-5592.0000490.
  • Venuti, F., Racic, V., Corbetta, A. Modelling framework for dynamic interaction between multiple pedestrians and vertical vibrations of footbridges. Journal of Sound and Vibration. 2016. 379. DOI:10.1016/j.jsv.2016.05.047.
  • Lai, E., Gentile, C., Mulas, M.G. Experimental and numerical serviceability assessment of a steel suspension footbridge. Journal of Constructional Steel Research. 2017. 132. DOI:10.1016/j.jcsr.2017.01.005.
  • Demartino, C., Avossa, A.M., Ricciardelli, F. Deterministic and probabilistic serviceability assessment of footbridge vibrations due to a single walker crossing. Shock and Vibration. 2018. 2018. DOI:10.1155/2018/1917629.
  • Tubino, F. Human-structure interaction in pedestrian bridges: A probabilistic approach. Procedia Engineering. 2017. 199. DOI:10.1016/j.proeng.2017.09.584.
  • Fujino, Y., Pacheco, B.M., Nakamura, S. ‐I, Warnitchai, P. Synchronization of human walking observed during lateral vibration of a congested pedestrian bridge. Earthquake Engineering & Structural Dynamics. 1993. 22(9). DOI:10.1002/eqe.4290220902.
  • Carroll, S.P., Owen, J.S., Hussein, M.F.M. Modelling crowd-bridge dynamic interaction with a discretely defined crowd. Journal of Sound and Vibration. 2012. 331(11). DOI:10.1016/j.jsv.2012.01.025.
  • Qin, J.W., Law, S.S., Yang, Q.S., Yang, N. Pedestrian-bridge dynamic interaction, including human participation. Journal of Sound and Vibration. 2013. 332(4). DOI:10.1016/j.jsv.2012.09.021.
  • Hu, J., Bian, X., Jiang, J. Critical Velocity of High-speed Train Running on Soft Soil and Induced Dynamic Soil Response. Procedia Engineering. 2016. 143. DOI:10.1016/j.proeng.2016.06.102.
  • Ntotsios, E., Koroma, S.G., Hamad, W.I., Thompson, D.J., Hunt, H.E.M., Talbot, J.P., Hussein, M.F.M. Modelling of Train Induced Vibration. Stephenson Conference Research for Railways 2015. 2015. 2015-April.
  • Barabash, M.S., Pikul, A. V., Bashynska, O. THE MODELING OF STRUCTURAL ENFORCEMENT BY COMPOSITE MATERIALS ON “LIRA-SAPR.” International Journal for Computational Civil and Structural Engineering. 2017. 13(1). DOI:10.22337/2587-9618-2017-13-1-34-41.
  • Ahmadi, E., Caprani, C., Živanović, S., Heidarpour, A. Vertical ground reaction forces on rigid and vibrating surfaces for vibration serviceability assessment of structures. Engineering Structures. 2018. 172. DOI:10.1016/j.engstruct.2018.06.059.
  • Lu, P., Zhou, Y., Lu, Q., Wang, J., Shi, Q., Li, D. Conceptual Design of the Pedestrian Bridge. Structural Engineering International. 2021. DOI:10.1080/10168664.2021.1911610.
  • Golkar, N., Sadeghpour, A., Divandari, J. Drawing inspiration from the spine, designing a pedestrian bridge [spine-inspired design of a pedestrian bridge]. Journal of Architecture and Urbanism. 2021. 45(2). DOI:10.3846/jau.2021.13369.
  • Ali, S., Thambiratnam, D., Liu, X., Fawzia, S. Numerical study of pedestrian suspension bridge with innovative composite deck. Heliyon. 2020. 6(7). DOI:10.1016/j.heliyon.2020.e04473.
  • Ali, S., Thambiratnam, D., Liu, X., Fawzia, S. Performance evaluation of innovative composite pedestrian bridge. Structures. 2020. 26. DOI:10.1016/j.istruc.2020.05.010.
  • Dey, P., Narasimhan, S., Walbridge, S. Reliability-based assessment and calibration of standards for the lateral vibration of pedestrian bridges. Engineering Structures. 2021. 239. DOI:10.1016/j.engstruct.2021.112271.
  • Ali, S., Thambiratnam, D., Fawzia, S., Nguyen, K.D., Van Den Elsen, H., Fujii, I.A. Damage detection of an innovative composite slab-girder pedestrian bridge using vibration characteristics. Structure and Infrastructure Engineering. 2021. DOI:10.1080/15732479.2021.1880447.
  • Ali, S., Thambiratnam, D., Fawzia, S., Nguyen, K.D., Leung, F.Y. Structural performance evaluation of innovative composite pedestrian arch bridge. Structure and Infrastructure Engineering. 2021. 17(1). DOI:10.1080/15732479.2020.1730411.
  • Štimac Grandić, I. Serviceability verification of pedestrian bridges under pedestrian loading. Tehnicki vjesnik - Technical Gazette. 2015. 22(2). DOI:10.17559/tv-20131030105641.
  • Jamadin, A., Ibrahim, Z., Mohd Amin, N., Alisibramulisi, A., Suliman, N.H., Malai Hussin, M.H.S. Dynamic behaviour of existing steel pedestrian bridge. International Journal of Civil Engineering and Technology. 2018. 9(7).
  • Bank, L.C., Oliva, M.G., Bae, H.U., Bindrich, B. V. Hybrid concrete and pultruded-plank slabs for highway and pedestrian bridges. Construction and Building Materials. 2010. 24(4). DOI:10.1016/j.conbuildmat.2009.10.002.
  • Liu, Q.Z. Scheme Designand Structural Performance of Steel Trussed Arch Pedestrian Bridges. Wuhan Ligong Daxue Xuebao/Journal of Wuhan University of Technology. 2021. 43(3). DOI:10.3963/j.issn.1671-4431.2021.03.006.
Еще
Статья научная