Особенности первичной структуры гена Ph-3, выявленные при создании нового маркера устойчивости томата к фитофторозу

Автор: Мартынов В.В., Козарь Е.Г., Енгалычева И.А.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Генетика и геномика

Статья в выпуске: 5 т.57, 2022 года.

Бесплатный доступ

Фитофтороз, вызываемый оомицетом Phytophthora infestans (Mont.) de Bary, - одно из самых вредоносных заболеваний томатов. Наиболее перспективным методом борьбы с ним остается выведение устойчивых сортов, при создании которых широко используется интрогрессия генов устойчивости из дикорастущих родственных видов. В частности, несколько генов устойчивости к фитофторозу, идентифицированных у дикого вида томата Solanum pimpinellifolium , были интрогрессированы в культурные сорта. Наиболее сильным геном считается Ph-3 , поскольку он обеспечивает устойчивость к множеству изолятов P. infestans . На сегодняшний день известны ДНК-маркеры, так или иначе ассоциированные с этим геном. Однако в геноме томата были обнаружены гомологи этого гена, которые не обладают функциональной активностью. В настоящей работе впервые показано, что в сортах томата отечественной селекции при наличии гена Ph-3 отсутствуют другие его гомологи. Также впервые установлено, что в последовательности гена Ph-3 присутствует вставка ретротранспозона, которая может приводить к потере геном своей функциональной активности. Нашей целью было создание простого в использовании высокоспецифичного ДНК-маркера гена Ph-3 , с помощью которого можно отличить Ph-3 от его структурных гомологов, и валидация этого маркера в сравнении с уже известными маркерами на основе анализа коллекции отечественных сортов и линий томата и оценки связи маркеров с полевой устойчивостью к фитофторозу. В работе использовали 24 образца томата ( Solanum lycopersicum L.). Исследования проводили в 2021 году на опытном поле ФГБНУ ФНЦО (Московская обл., Одинцовский р-н). Рассаду высаживали в грунт в I декаде июня. Поражение фитофторозом учитывали в динамике через каждые 7 сут, начиная с появления первых симптомов (III декада июля). Тотальную ДНК выделяли из молодых листьев 2-недельных растений при помощи набора реагентов Сорб-ГМО-Б («Синтол», Россия). Дизайн праймеров для специфичной амплификации гена Ph-3 осуществляли на основе множественного выравнивания нуклеотидной последовательности гена Ph-3 (GenBank no. KJ563933) и его структурных гомологов SlRGA1 , SlRGA2 , SlRGA 3 и SlRGA4 . Были подобраны праймеры, амплифицирующие фрагмент гена Ph-3 размером 412 п.н.: прямой 5'-AATATTGAAAATAGCTGCACTGA-3' и обратный 5'-CGAGATTTGGAGGGAATGTAA-3'. Созданный маркер получил название Ph3-412. Кроме того, для сравнительного анализа использовали праймеры маркера NC-LB-9-6678, амплифицирующие фрагменты размером 601 и 907 п.н.: 5'-CCTTAATGCAATAGGCAAAT-3' и 5'-ATTT-GAATGTTCTGGATTGG-3', последовательности которых абсолютно консервативны для гена Ph-3 и его гомологов. Для определения нуклеотидных последовательностей полученных ампликонов их клонировали в вектор pAL-TA («Евроген», Россия), которым трансформировали компетентные клетки Escherichia coli DH5a, и секвенировали по методу Сэнгера. Осуществляли множественное выравнивание нуклеотидных последовательностей с последующим анализом результатов выравнивания. Для построения дендрограммы использовали программу TREECON (http://bioinfor-matics.psb.ugent.be/software/details/Treecon). Производные аминокислотные последовательности были получены с помощью программы EditSeq (https://macdownload.informer.com/editseq/down-load/). Для поиска гомологов полученных последовательностей в базе данных NCBI использовали программу BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). При сравнении результатов молекулярного анализа с данными фенотипической оценки полевой устойчивости к фитофторозу ни один из маркеров не показал однозначной связи с полевой устойчивостью. Мы подтвердили, что амплифицируемый с помощью праймеров Ph3-412 фрагмент принадлежит гену Ph-3 , в то время как фрагмент размером 601 п.н., который получают с праймерами NC-LB-9-6678, соответствует гомологу SlRGA4. Показано, что фрагмент размером 907 п.н., полученный с теми же праймерами, гомологичен гену Ph-3 , но при этом содержит вставку LTR ретротранспозона семейства Ty1- copia размером 306 п.н. У всех сортов, у которых был обнаружен ген Ph-3 , он содержал вышеуказанную вставку. Наличие такой вставки может приводить к потере функциональной активности, что необходимо учитывать при маркировании гена Ph-3 . Исходя из этого, набольшую селекционную ценность представляют генотипы, у которых ген Ph-3 не имеет вставки ретротранспозона.

Еще

Томаты, фитофтороз, ген ph-3, днк-маркеры, гены устойчивости

Короткий адрес: https://sciup.org/142236365

IDR: 142236365   |   DOI: 10.15389/agrobiology.2022.5.954rus

Список литературы Особенности первичной структуры гена Ph-3, выявленные при создании нового маркера устойчивости томата к фитофторозу

  • Judelson H.S., Blanco F.A. The spores of Phytophthora: weapons of the plant destroyer. Nature Reviews Microbiology, 2005, 3(1): 47-58 (doi: 10.1038/nrmicro1064).
  • Deahl K.L., Cooke L.R., Black L.L., Wang T.C., Perez F. M., Moravec B.C., Quinn M., Jones R.W. Population changes in Phytophthora infestans in Taiwan associated with the appearance of resistance to metalaxyl. Pest Management Science, 2002, 58(9): 951-958 (doi: 10.1002/ps.559).
  • Fry W.E. Phytophthora infestans: the plant (and R gene) destroyer. Molecular Plant Pathology, 2008, 9(3): 385-402 (doi: 10.1111/j.1364-3703.2007.00465.x).
  • Randall E., Young V., Sierotzki H., Scalliet G., Birch P.R.J., Cooke D.E.L., Csukai M., Whisson S.C. Sequence diversity in the large subunit of RNA polymerase I contributes to mefenoxam insensitivity in Phytophthora infestans. Molecular Plant Pathology, 2014, 15(7): 664676 (doi: 10.1111/mpp.12124).
  • Saville A., Graham K., Grunwald N.J., Myers K., Fry W.E., Ristaino J.B. Fungicide sensitivity of US genotypes of Phytophthora infestans to six oomycete-targeted compounds. Plant Disease, 2015, 99(5): 659-666 (doi: 10.1094/PDIS-05-14-0452-RE).
  • Montes M.S., Nielsen B.J., Schmidt S.G., B0dker L., Kj0ller R., Rosendahl S. Population genetics of Phytophthora infestans in Denmark reveals dominantly clonal populations and specific alleles linked to metalaxyl-M resistance. Plant Pathology Journal, 2016, 65(5): 744-753 (doi: 10.1111/ppa.12462).
  • Brouwer D.J., Jones E.S., St Clair D.A. QTL analysis of quantitative resistance to Phytophthora infestans (late blight) in tomato and comparisons with potato. Genome, 2004, 47(3): 475-492 (doi: 10.1139/g04-001).
  • Foolad M.R., Merk H.L., Ashrafi H. Genetics, genomics and breeding of late blight and early blight resistance in tomato. Critical Reviews in Plant Sciences, 2008, 27(2): 75-107 (doi: 10.1080/07352680802147353).
  • Li J., Liu L., Bai Y., Finkers R., Wang F., Du Y., Yang Y., Xie B., Visser R.G.F., van Heusden A.W. Identification and mapping of quantitative resistance to late blight (Phytophthora infestans) in Solanum habrochaites LA1777. Euphytica, 2011, 179(3): 427-438 (doi: 10.1007/s10681-010-0340-7).
  • Nowicki M., Foolad M.R., Nowakowska M., Kozik E.U. Potato and tomato late blight caused by Phytophthora infestans: an overview of pathology and resistance breeding. Plant Disease, 2012, 96(1): 4-17 (doi: 10.1094/PDIS-05-11-0458).
  • Merk H.L., Ashrafi H., Foolad M.R. Selective genotyping to identify late blight resistance genes in an accession of the tomato wild species Solanum pimpinellifolium. Euphytica, 2012, 187(1): 6375 (doi: 10.1007/s10681-012-0729-6).
  • Peirce L.C. Linkage tests with Ph conditioning resistance to race 0 Phytophthora infestans. Report of the Tomato Genetics Cooperative, 1971, 21: 30.
  • Moreau P., Thoquet P., Olivier J., Laterrot H., Grimsley N. Genetic mapping of Ph-2, a single locus controlling partial resistance to Phytophthora infestans in tomato. Molecular Plant-Microbe Interactions, 1998, 11(4): 259-269 (doi: 10.1094/MPMI.1998.11.4.259).
  • Chunwongse J., Chunwongse C., Black L., Hanson P. Molecular mapping of the Ph-3 gene for late blight resistance in tomato. The Journal of Horticultural Science and Biotechnology, 2002, 77(3): 281-286 (doi: 10.1080/14620316.2002.11511493).
  • Chen C.H., Sheu Z.M., Wang T.C. Host specificity and tomato-related race composition of Phytophthora infestans isolates in Taiwan during 2004 and 2005. Plant Disease, 2008, 92(5): 751755 (doi: 10.1094/PDIS-92-5-0751).
  • Kim M.J., Mutschler M.A. Transfer to processing tomato and characterization of late blight resistance derived from Solanum pimpinellifoium L. L3708. Journal of the American Society for Horticultural Science, 2005, 130(6): 877-884 (doi: 10.21273/JASHS.130.6.877).
  • Zhang C., Liu L., Wang X., Vossen J., Li G., Li T., Zheng Z., Gao J., Guo Y., Visser R.G.F., Li J., Bai Y., Du Y. The Ph-3 gene from Solanum pimpinellifolium encodes CC-NBS-LRR protein conferring resistance to Phytophthora infestans. Theoretical and Applied Genetics, 2014, 127(6): 1353-1364 (doi: 10.1007/s00122-014-2303-1).
  • Park Y., Hwang J., Kim K., Kang J., Kim B., Xu S., Ahn Y. Development of the gene-based SCARs for the Ph-3 locus, which confers late blight resistance in tomato. Scientia Horticulturae, 2013, 164: 9-16 (doi: 10.1016/j.scienta.2013.08.013).
  • Truong H.T.H., Tran H.N., Choi H.S., Park P.H., Lee H.E. Development of a co-dominant SCAR marker linked to the Ph-3 gene for Phytophthora infestans resistance in tomato (Solanum lycopersicum). European Journal of Plant Pathology, 2013, 136(2): 237-245 (doi: 10.1007/s10658-012-0157-4).
  • Panthee D.R., Gardner R.G., Ibrahem R., Anderson C. Molecular markers associated with Ph-3 gene conferring late blight resistance in tomato. American Journal of Plant Sciences, 2015, 6(13): 2144-2150 (doi: 10.4236/ajps.2015.613216).
  • Wang Y.Y., Chen C.H., Hoffmann A., Hsu Y.C., Lu S.F., Wang J.F., Hanson P. Evaluation of the Ph-3 gene-specific marker developed for marker-assisted selection of late blight-resistant tomato. Plant Breeding, 2016, 135(5): 636-642 (doi: 10.1111/pbr.12395).
  • Van de Peer Y., de Wachter R. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the microsoft windows environment. Computer Applications in the Biosciences, 1994, 10(5): 569-570 (doi: 10.1093/bioinformatics/10.5.569).
  • Cheng X., Zhang D., Cheng Z., Keller B., Ling H.Q. A new family of Ty1-copia-like retrotrans-posons originated in the tomato genome by a recent horizontal transfer event. Genetics, 2009, 181(4): 1183-1193 (doi: 10.1534/genetics.108.099150).
  • Michalska A.M., Pazio M. A new method for evaluating tomato leaf resistance to Phytophthora infestans using a seedling test. Plant Breeding and Seed Science, 2002, 46(1): 3-21.
  • Michalska A.M., Sobkowiak S., Flis B., Zimnoch-Guzowska E. Virulence and aggressiveness of Phytophthora infestans isolates collected in Poland from potato and tomato plants identified no strong specificity. European Journal of Plant Pathology, 2016, 144(2): 325-336 (doi: 10.1007/s10658-015-0769-6).
Еще
Статья научная