Отвод теплового потока из буферных зон двухслойного фасада за счет аэрации

Автор: Горшков А.С., Тютюнников А.И., Немова Д.В., Андреева Тарасова Д.С., Ольшевский В.Я.

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 4 (109), 2023 года.

Бесплатный доступ

Объектом исследования является вентилируемый фасад с воздушными буферными зонами. Проблема отвода теплового потока от буферных зон двухслойного фасада путем аэрации является актуальной для снижения нагрузки на системы охлаждения зданий и снижения затрат на энергоносители в летний период.

Высотные здания, ограждающая конструкция, теплопередача, конвективный, фасады, двойное остекление, буферная зона, тепловые излишки, аэрация, кондиционирование воздуха, охлаждение

Короткий адрес: https://sciup.org/143182697

IDR: 143182697   |   DOI: 10.4123/CUBS.109.4

Список литературы Отвод теплового потока из буферных зон двухслойного фасада за счет аэрации

  • Ascione, F., Bianco, N., Iovane, T., Mastellone, M. and Mauro, G.M. (2021) The Evolution of Building Energy Retrofit via Double-Skin and Responsive Façades: A Review. Solar Energy, Elsevier Ltd, 224, 703–717. https://doi.org/10.1016/J.SOLENER.2021.06.035.
  • Ascione, F., Bianco, N., De Rossi, F., Iovane, T. and Mauro, G.M. (2021) Energy Refurbishment of an Office Building by Addition of a Second Skin: Improvement of Thermal Behavior, Energy Performance and Possible Conversion by PV. 2021 6th International Conference on Smart and Sustainable Technologies, SpliTech 2021, Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.23919/SPLITECH52315.2021.9566358.
  • Zhang, T., Tan, Y., Yang, H. and Zhang, X. (2016) The Application of Air Layers in Building Envelopes: A Review. Applied Energy, Elsevier, 165, 707–734. https://doi.org/10.1016/J.APENERGY.2015.12.108.
  • Montazeri, H., Blocken, B., Derome, D., Carmeliet, J. and Hensen, J.L.M. (2015) CFD Analysis of Forced Convective Heat Transfer Coefficients at Windward Building Facades: Influence of Building Geometry. Journal of Wind Engineering and Industrial Aerodynamics, Elsevier B.V., 146, 102–116. https://doi.org/10.1016/j.jweia.2015.07.007.
  • Tabadkani, A., Roetzel, A., Li, H.X. and Tsangrassoulis, A. (2022) Simulation-Based Personalized Real-Time Control of Adaptive Facades in Shared Office Spaces. Automation in Construction, Elsevier, 138, 104246. https://doi.org/10.1016/J.AUTCON.2022.104246.
  • Kuru, A., Oldfield, P., Bonser, S. and Fiorito, F. (2021) Performance Prediction of Biomimetic Adaptive Building Skins: Integrating Multifunctionality through a Novel Simulation Framework. Solar Energy, Elsevier Ltd, 224, 253–270. https://doi.org/10.1016/j.solener.2021.06.012.
  • Preet, S., Sharma, M.K., Mathur, J., Chowdhury, A. and Mathur, S. (2020) Performance Evaluation of Photovoltaic Double-Skin Facade with Forced Ventilation in the Composite Climate. Journal of Building Engineering, Elsevier Ltd, 32. https://doi.org/10.1016/j.jobe.2020.101733.
  • Chen, H., Cai, B., Yang, H., Wang, Y. and Yang, J. (2022) Study on Natural Lighting and Electrical Performance of Louvered Photovoltaic Windows in Hot Summer and Cold Winter Areas. Energy and Buildings, Elsevier Ltd, 271. https://doi.org/10.1016/j.enbuild.2022.112313.
  • Zhang, T. and Yang, H. (2019) Flow and Heat Transfer Characteristics of Natural Convection in Vertical Air Channels of Double-Skin Solar Façades. Applied Energy, Elsevier Ltd, 242, 107–120. https://doi.org/10.1016/j.apenergy.2019.03.072.
  • Roversi, R., Cinquepalmi, F., Cumo, F. and Pennacchia, E. (2018) Experimental Envelopes and Their Integration in the Building Information Modeling Energy Simulation Process. International Journal of Energy Production and Management, WITPress, 3, 97–109. https://doi.org/10.2495/EQ-V3-N2-97-109.
  • Popa, C., Ospir, D., Fohanno, S. and Chereches, C. (2012) Numerical Simulation of Dynamical Aspects of Natural Convection Flow in a Double-Skin Façade. Energy and Buildings, 50, 229–233. https://doi.org/10.1016/j.enbuild.2012.03.042.
  • Jiru, T.E., Taob, Y.X. and Haghighat, F. (2011) Airflow and Heat Transfer in Double Skin Facades. Energy and Buildings, Elsevier Ltd, 43, 2760–2766. https://doi.org/10.1016/j.enbuild.2011.06.038.
  • Fuliotto, R., Cambuli, F., Mandas, N., Bacchin, N., Manara, G. and Chen, Q. (2010) Experimental and Numerical Analysis of Heat Transfer and Airflow on an Interactive Building Facade. Energy and Buildings, 42, 23–28. https://doi.org/10.1016/j.enbuild.2009.07.006.
  • Lin, Z., Song, Y. and Chu, Y. (2022) Summer Performance of a Naturally Ventilated Double-Skin Facade with Adjustable Glazed Louvers for Building Energy Retrofitting. Energy and Buildings, Elsevier Ltd, 267. https://doi.org/10.1016/j.enbuild.2022.112163.
  • Matour, S., Garcia-Hansen, V., Omrani, S., Hassanli, S. and Drogemuller, R. (2022) Thermal Performance and Airflow Analysis of a New Type of Double Skin Façade for Warm Climates: An Experimental Study. Journal of Building Engineering, Elsevier Ltd, 62. https://doi.org/10.1016/j.jobe.2022.105323.
  • Yezioro, A. and Capeluto, I.G. (2007) A Model for the Energetic-Economic Optimization of Office Buildings. Architectural Science Review, 50, 331–339. https://doi.org/10.3763/ASRE.2007.5040.
  • Aleksandrowicz, O. and Yezioro, A. (2018) Mechanically Ventilated Double-Skin Facade in a Hot and Humid Climate: Summer Monitoring in an Office Tower in Tel Aviv. Architectural Science Review, Taylor and Francis Ltd., 61, 171–188. https://doi.org/10.1080/00038628.2018.1450726.
  • Hudișteanu, S.V., Țurcanu, F.E., Cherecheș, N.C., Verdeș, M., Ancaș, A.D., Popovici, C.G. and Ciocan, V. (2023) Mathematical Modelling and Design of Photovoltaic System for Free-Standing Application. Lecture Notes in Networks and Systems, Springer Science and Business Media Deutschland GmbH, 605 LNNS, 612–621. https://doi.org/10.1007/978-3-031-22375-4_49.
  • Chereches, M.L., Chereches, N.C., Ciobanu, A.A., Hudisteanu, S.V., Turcanu, E.F., Bradu, A. and Popovici, C.G. (2021) Experimental Study on Airflow and Temperature Predicting in a Double Skin Façade in Hot and Cold Seasons in Romania. Applied Sciences (Switzerland), MDPI, 11. https://doi.org/10.3390/APP112412139.
  • Jankovic, A. and Goia, F. (2022) Characterization of a Naturally Ventilated Double-Skin Façade through the Design of Experiments (DOE) Methodology in a Controlled Environment. Energy and Buildings, Elsevier Ltd, 263. https://doi.org/10.1016/j.enbuild.2022.112024.
  • Jankovic, A., Siddiqui, M.S. and Goia, F. (2022) Laboratory Testbed and Methods for Flexible Characterization of Thermal and Fluid Dynamic Behaviour of Double Skin Facades. Building and Environment, Elsevier Ltd, 210. https://doi.org/10.1016/j.buildenv.2021.108700.
  • Jankovic, A. and Goia, F. (2022) Control of Heat Transfer in Single-Story Mechanically Ventilated Double Skin Facades. Energy and Buildings, Elsevier Ltd, 271. https://doi.org/10.1016/j.enbuild.2022.112304.
  • Jankovic, A. and Goia, F. (2021) Impact of Double Skin Facade Constructional Features on Heat Transfer and Fluid Dynamic Behaviour. Building and Environment, Elsevier Ltd, 196. https://doi.org/10.1016/j.buildenv.2021.107796.
  • Pekdogan, T., Tokuç, A., Ezan, M.A. and Başaran, T. (2021) Experimental Investigation on Heat Transfer and Air Flow Behavior of Latent Heat Storage Unit in a Facade Integrated Ventilation System. Journal of Energy Storage, Elsevier Ltd, 44. https://doi.org/10.1016/j.est.2021.103367.
  • Inan, T., Basaran, T. and Erek, A. (2017) Experimental and Numerical Investigation of Forced Convection in a Double Skin Façade. Energies, MDPI AG, 10. https://doi.org/10.3390/EN10091364.
  • Vatin, N.I., Rymkevich, P.P. and Gorshkov, A.S. (2020) Climate Change and the Thermal Island Effect in the Million-plus City. Construction of Unique Buildings and Structures, 90, 8902–8902. https://doi.org/10.18720/CUBS.89.2.
  • Perlova, E., Karpova, S., Rakova, X.M., Bondarenko, E., Platonova, M. and Gorshkov, A.S. (2015) The Architectural Concept of the Building with Low Energy Consumption. Applied Mechanics and Materials, Trans Tech Publications, Ltd., 725–726, 1580–1588. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.725-726.1580.
  • Vatin, N., Gorshkov, A., Rymkevich, P., Nemova, D. and Tarasova, D. (2014) Nonstationary Thermal Conductionthrough the Building Envelope. Applied Mechanics and Materials, Trans Tech Publications Ltd, 670–671, 365–369. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.670-671.365.
  • Vatin, N., Gorshkov, A., Nemova, D. and Tarasova, D. (2014) Energy Efficiency of Facades at Major Repairs of Buildings. Applied Mechanics and Materials, Trans Tech Publications Ltd, 633–634, 991–996. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.633-634.991.
  • Varlamov, N. V., Gorshkov, A.S., Yuferev, Y. V., Lezer, A.Y., Zhirnov, A.E. and Parashchenko, N.A. (2023) The Heat-Storage Capacity of the Lakhta Center Multifunctional Complex Tower Building. Thermal Engineering, Pleiades Publishing Ltd, 70, 32–40. https://doi.org/10.1134/S0040601523010081/METRICS.
Еще
Статья научная