Parallel algorithms for effective correspondence problem solution in computer vision
Автор: Tushev S.A., Sukhovilov B.M.
Рубрика: Информатика, вычислительная техника и управление
Статья в выпуске: 2 т.6, 2017 года.
Бесплатный доступ
We propose new parallel algorithms for correspondence problem solution in computer vision. We develop an industrial photogrammetric system that uses artificial retroreflective targets that are photometrically identical. Therefore, we cannot use traditional descriptor-based point matching methods, such as SIFT, SURF etc. Instead, we use epipolar geometry constraints for finding potential point correspondences between images. In this paper, we propose new effective graph-based algorithms for finding point correspondences across the whole set of images (in contrast to traditional methods that use 2-4 images for point matching). We give an exact problem solution via superclique and show that this approach cannot be used for real tasks due to computational complexity. We propose a new effective parallel algorithm that builds the graph from epipolar constraints, as well as a new fast parallel heuristic clique finding algorithm. We use an iterative scheme (with backprojection of the points, filtering of outliers and bundle adjustment of point coordinates and cameras’ positions) to obtain an exact correspondence problem solution. This scheme allows using heuristic clique finding algorithm at each iteration. The proposed architecture of the system offers a significant advantage in time. Newly proposed algorithms have been implemented in code; their performance has been estimated. We also investigate their impact on the effectiveness of the photogrammetric system that is currently under development and experimentally prove algorithms’ efficiency.
Computer vision, photogrammetry, correspondence problem, parallel algorithms, maximum clique problem, epipolar geometry
Короткий адрес: https://sciup.org/147160619
IDR: 147160619 | DOI: 10.14529/cmse170204
Список литературы Parallel algorithms for effective correspondence problem solution in computer vision
- Hartley R., Zisserman A. Multiple View Geometry in Computer Vision. 2nd ed. Cambridge University Press, 2004.
- Baggio D. et al. Mastering OpenCV with Practical Computer Vision Projects. Packt Publishing, 2012.
- Bay H., Tuytelaars T., van Gool L. SURF: Speeded Up Robust Features//Computer Vision and Image Understanding. 2008. Vol. 110, No. 3, P. 346-359 DOI: 10.1016/j.cviu.2007.09.014
- owe D.G. Object recognition from local scale-invariant features//Proceedings of the Seventh IEEE International Conference on Computer Vision. 1999. Vol. 2, P. 1150-1157 DOI: 10.1109/ICCV.1999.790410
- Fraser C.S. Innovations in automation for vision metrology systems//Photogrammetric Record. 1997. Vol. 15, No. 90, P. 901-911
- Суховилов Б. М., Григорова Е. А. Разработка фотограмметрической системы измерения пространственных координат элементов конструкций каркаса низкопольного трамвая//Наука ЮУрГУ . Материалы 67-й научной конференции. Секции экономики, управления и права. Челябинск: Издательский центр ЮУрГУ, 2015. С. 458-463.
- Тушев С.А., Суховилов Б.М. Некоторые способы повышения производительности автоматической калибровки цифровых камер//Молодой исследователь: материалы 2-й научной выставки-конференции научно-технических и творческих работ студентов. Челябинск: Издательский центр ЮУрГУ, 2015. С. 434-439.
- Hartmann W., Havlena M., Schindler K. Recent developments in large-scale tie-point matching//ISPRS Journal of Photogrammetry and Remote Sensing. International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS), 2016. Vol. 115. P. 47-62 DOI: 10.1016/j.isprsjprs.2015.09.005
- Remondino F. et al. State of the art in high density image matching//The Photogrammetric Record. 2014. Vol. 29, No 146. P. 144-166 DOI: 10.1111/phor.12063
- Leutenegger S., Chli M., Siegwart R.Y. BRISK: Binary Robust Invariant Scalable Keypoints DOI: 10.1109/ICCV.2011.6126542
- Ortiz R., Alahi A., Vandergheynst P. FREAK: Fast retina keypoint//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2012. P. 510-517 DOI: 10.1109/CVPR.2012.6247715
- Fraser C.S., Cronk S. A hybrid measurement approach for close-range photogrammetry//ISPRS Journal of Photogrammetry and Remote Sensing. Elsevier B.V., 2009. Vol. 64, No 3. P. 328-333
- Leung C., Lovell B.C. 3D Reconstruction through Segmentation of Multi-View Image Sequences//Proceedings of the 2003 APRS Workshop on Digital Image Computing. 2003. P. 87-92. URL: http://espace.library.uq.edu.au/view/UQ:10960 (дата обращения: 29.11.2016)
- Qiqiang F., Guangyun L. Matching of artificial target points based on space intersection//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2008. Vol. XXXVII. P. 111-114
- Maas H.-G. Complexity analysis for the establishment of image correspondences of dense spatial target fields//International Archives of Photogrammetry and Remote Sensing. 1992. Vol. 29. P. 102-107.
- Dold J., Maas, H.-G. An Application of Epipolar Line Intersection in a Hybrid Close-Range Photogrammetric System//International Archives of Photogrammetry and Remote Sensing. 1994. Vol. 30(5), P. 65-70.
- Zhang Z. et al. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry//Artificial Intelligence. 1995. Vol. 78, No 1-2. P. 87-119 DOI: 10.1016/0004-3702(95)00022-4
- Arnfred J.T., Winkler S. A general framework for image feature matching without geometric constraints//Pattern Recognition Letters. Elsevier B.V., 2016. Vol. 73. P. 26-32 DOI: 10.1016/j.patrec.2015.12.017
- Takimoto R.Y. et al. Epipolar geometry estimation, metric reconstruction and error analysis from two images//IFAC Proceedings Volumes (IFAC-PapersOnline). 2012. Vol. 14, No 1. P. 1739-1744 DOI: 10.3182/20120523-3-RO-2023.00098
- Fraser C. Advances in Close-Range Photogrammetry//Photogrammetric Week 2015. 2015. P. 257-268.
- V-STARS -Geodetic Systems, Inc. URL: https://www.geodetic.com/v-stars/(дата обращения: 29.01.2017).
- Agisoft PhotoScan. URL: http://www.agisoft.com/(дата обращения:: 29.01.2017).
- Maas H.-G. Automatic DEM generation by multi-image feature based matching//International Archives of Photogrammetry and Remote Sensing. 1996. Vol. 31. P. 484-489.
- Bhowmick B. et al. Divide and conquer: A hierarchical approach to large-scale structure-from-motion//Computer Vision and Image Understanding. Elsevier Inc., 2017. Vol. 157. P. 190-205 DOI: 10.1016/j.cviu.2017.02.006
- Forsyth D., Ponce J. Computer Vision: A Modern Approach. 2nd ed. Pearson, 2011.
- Суховилов Б.М., Сартасов Е.М., Григорова Е.А. Повышение точности определения положения кодовых марок в задачах построения трехмерных моделей объектов//Пром-инжиниринг: труды II международной научно-технической конференции. Челябинск: Издательский центр ЮУрГУ, 2016. С. 363-366.
- Bomze I., Budinich M., Pardalos P., Pelillo M. The Maximum Clique Problem//Handbook of Combinatorial Optimization, 1999. P. 1-74.
- Triggs B., McLauchlan P., Hartley R., Fitzgibbon A. Bundle Adjustment -A Modern Synthesis//Vision Algorithms: Theory & Practice. 2000. Vol. 1883. P. 298-372 DOI: 10.1007/3-540-44480-7_21
- Тушев С.А., Суховилов Б.М. Эффективные алгоритмы поиска соответствий точек на снимках на основе графов//Пром-инжиниринг: труды II международной научнотехнической конференции. Челябинск: Издательский центр ЮУрГУ, 2016. С. 464-468
- OpenCV (Open Source Computer Vision Library): URL: http://opencv.org/(дата обращения: 29.11.2016).
- Eigen: C++ template library for linear algebra: URL: http://eigen.tuxfamily.org/(дата обращения: 29.11.2016).
- Konc J., Janežič D. An improved branch and bound algorithm for the maximum clique problem//MATCH Communications in Mathematical and in Computer Chemistry. 2007, P. 569-590
- Konc J., Janezic D. New C++ source code of the MaxCliqueDyn algorithm: URL: http://insilab.org/maxclique/(дата обращения: 29.11.2016).
- Tomita E., Tanaka A., Takahashi H. The worst-case time complexity for generating all maximal cliques and computational experiments//Theoretical Computer Science. 2006, Vol. 363, No. 1, P. 28-42 DOI: 10.1016/j.tcs.2006.06.015
- Conte, A. Review of the Bron-Kerbosch algorithm and variations. URL: http://www.dcs.gla.ac.uk/pat/jchoco/clique/enumeration/report.pdf (дата обращения: 29.11.2016)
- C. Bron, J. Kerbosch. Algorithm 457: finding all cliques of an undirected graph//Communications of the ACM. Sep 1973, Vol. 16, No. 9, P. 575-577 DOI: 10.1145/362342.362367
- Ozaki K. smly:find_cliques -a pivoting version of Bron-Kerbosch algorithm. URL: https://gist.github.com/smly/1516622 (дата обращения: 29.11.2016)
- Boost C++ libraries.: URL: http://www.boost.org/(дата обращения: 29.11.2016).