Peculiarities of the formation of silicon oxide films modified with metal nanoparticles

Автор: Vyacheslav I. Pavlenko, Andrey I. Gorodov, Roman N. Yastrebinsky, Mikhail S. Lebedev, Vitaliy V. Kashibadze

Журнал: Nanotechnologies in Construction: A Scientific Internet-Journal @nanobuild-en

Рубрика: Application of nanomaterials and nanotechnologies in construction

Статья в выпуске: 5 Vol.15, 2023 года.

Бесплатный доступ

Introduction. Silicon oxide film coatings have unique properties and are widely used in various industries, including construction. This paper presents the results on the preparation of polyalkylhydroxysiloxane liquid film in the presence of nanoscale particles of metallic bismuth. Methods and materials. Laser ablation method of metallic bismuth in aqueous medium was used to obtain bismuth nanoparticles. The surface of the target was treated with a laser beam at the workstation of an ytterbium pulsed fiber laser are discussed. The particle size and electrokinetic properties of colloidal bismuth sols were determined method by dynamic light scattering. After drying, Bi powder was added to polyalkylhydroxysiloxane liquid. Thin films cured under different heat treatment modes are applied to glass substrates by dipping. The resulting films were characterized by SEM, X-ray phase analysis, and FTIR spectroscopy. Results. In this work, the electrokinetic properties of colloidal bismuth sols are discussed. Laser ablation of a bismuth substrate leads to an increase in electrical conductivity and the appearance of a double electric layer in colloidal sols. The effect of the curing temperature on the properties of the coating is shown. It was found that the content of bismuth nanoparticles in the polyalkylhydroxysiloxane coating (3 wt.%) does not lead to the formation of crystalline phases. At the same time, the composition of the film and the mode of heat treatment affect the short-range order of molecular bonds. Increasing the content of bismuth nanoparticles in the coating of more than 10 wt.% leads to the appearance of microcrystalline phases of bismuth silicates in the system. Conclusion. The results obtained in the course of the study supplement the information about the production of bismuth nanoparticles by laser ablation and are of great importance in the practice of creating composite films.

Еще

Polyorganohydrosiloxane, silicon dioxide, bismuth nanoparticles, laser ablation, electrokinetic potential, coatings, IR spectroscopy, bismuth silicates, silica-organic

Короткий адрес: https://sciup.org/142238326

IDR: 142238326   |   DOI: 10.15828/2075-8545-2023-15-5-465-473

Список литературы Peculiarities of the formation of silicon oxide films modified with metal nanoparticles

  • Valtchev V.P., Faust A.C., Lézervant J. Rapid synthesis of silicalite-1 nanocrystals by conventional heating. Microporous and Mesoporous Materials. 2004; 68: 91-95. https://doi.org/10.1016/j.micromeso.2003.11.018
  • Post P., Wurlitzer L., Maus-Friedrichs W., Weber A.P. Characterization and applications of nanoparticles modified in-flight with silica or silica-organic coatings. Nanomaterials. 2018; 8(7): 530. https://doi.org/10.3390/nano8070530
  • Privezentsev V.V., Kulikauskas V.S., Zatekin V.V., Kiselev D.A., Voronova M.I. Study of Memristors Based on Silicon Oxide Films Implanted with Zn. Poverkhnost. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya. 2022; 6: 96-102. https://doi.org/10.31857/S1028096022060140
  • Privezentsev V.V., Sergeev A.P., Firsov A.A., Kulikauskas V.S., Yakimov E.E., Kirilenko E.P., Goryachev A.V. Study of Zn implanted silicon oxide films. Physics of the Solid State. 2023; 4: 679-684. https://doi.org/10.21883/PSS.2023.04.56013.17
  • Pakuła D., Marciniec B., Przekop R.E. Direct Synthesis of Silicon Compounds—From the Beginning to Green Chemistry Revolution. AppliedChem 2023; 3: 89-109. https://doi.org/10.3390/appliedchem3010007
  • Pavlenko V.I., Cherkashina N.I., Edamenko O.D., Yastrebinsky R.N., Noskov A.V., Prokhorenkov D.S., Gorodov A.I., Piskareva A.O. Synthesis and Characterization of Silicon–Carbon Powder and Its Resistance to Electron Irradiation. Journal of Composites Science. 2023; 7: 340. https://doi.org/10.3390/jcs7080340
  • Cherkashina, N.I.; Pavlenko, V.I.; Zaitsev, S.V.; Gorodov, A.I.; Domarev, S.N.; Sidelnikov, R.V.; Romanyuk, D.S. Adhesion Strength of Al, Cr, In, Mo, and W Metal Coatings Deposited on a Silicon–Carbon Film. Coatings 2023; 13: 1353. https://doi.org/10.3390/coatings13081353
  • Skorodumova O.B., Semchenko G.D., Goncharenko Y.N., Tolstoj V.S. Crystallization of SiO2 from ethylsilicatebased gels. Steklo i Keramika. 2001; 74(1): 31-33. https://doi.org/10.1023/a:1010933028152
  • Oehler J.H. Hydrothermal crystallization of silica gel. Geological Society of America Bulletin. 1976; 87: 1143-1152. https://doi.org/10.1130/0016-7606(1976)87%3C1143:HCOSG%3E2.0.CO;2
  • Kishore R., Sood K., Naseem H. Microstructural and analytical investigation of low temperature crystallized amorphous silicon/crystallized silicon interface using SEM and EDS. Journal of Materials Science Letters. 2002; 21: 647-648. https://doi.org/10.1023/A:1015600423981
  • Kioseoglou J., Komninou P., Dimitrakopulos G.P., Antoniades I. P., Hatalis M. K., Karakostas Th. Crystallization of amorphous silicon thin films: comparison between experimental and computer simulation results. Journal of Materials Science. 2008; 43: 3976–3981. https://doi.org/10.1007/s10853-007-2226-1
  • Huang J., Zhang P., Wang X., Luo L., Gao J., Peng C., Liu X. Crystallization of inorganic silica based on interaction between polyimide and silica by sol–gel method. Journal of Sol-Gel Science and Technology. 2013; 66: 193–198. https://doi.org/10.1007/s10971-013-2989-6
  • Nast O., Brehme S., Neuhaus D.H., Wenham S. R. Polycrystalline silicon thin films on glass by aluminuminduced crystallization. IEEE Transactions on Electron Devices. 1999; 10: 2062-2068. https://doi.org/10.1109/16.791997
  • Hossain M., Meyer H.M., Abu-Safe H.H., Naseem H., Brown W.D. Large-grain poly-crystalline silicon thin films prepared by aluminum-induced crystallization of sputter-deposited hydrogenated amorphous silicon. Journal of Materials Research. 2006; 21: 761–766. https://doi.org/10.1557/jmr.2006.0091
  • Schneider J., Schneider A., Sarikov A., Klein J., Muske M., Gall S., Fuhs W. Aluminum-induced crystallization: Nucleation and growth process. Journal of Non-Crystalline Solids. 2006; 352(9-20): 972-975. https://doi.org/10.1016/j.jnoncrysol.2005.09.036
  • Knaepen W., Detavernier C., Van Meirhaeghe R.L., Jordan Sweet J., Lavoie C. In-situ X-ray Diffraction study of Metal Induced Crystallization of amorphous silicon. Thin Solid Films. 2008; 516(15): 4946-4952. https://doi.org/10.1016/j.tsf.2007.09.037
  • Wang T., Yan H., Zhang M., Song X., Pan Q., He T., Hu Z., Jia H., Mai Y. Polycrystalline silicon thin films by aluminum induced crystallization of amorphous silicon. Applied Surface Science. 2013; 264: 11-16. https://doi.org/10.1016/j.apsusc.2012.09.019
  • Zouini M., Ouertani R., Amlouk M., Dimassi W. Annealing Temperature Effect on Bismuth Induced Crystallization of Hydrogenated Amorphous Silicon Thin Films. Silicon. 2022; 14: 2115–2125. https://doi.org/10.1007/s12633-021-01005-7
  • Kaito C., Kumamoto A., Saito Y., Ono R. Low-temperature crystallization of thin silicate layer on crystalline Fe dust. Earth, planets and space. 2010; 62: 29–31. https://doi.org/10.5047/eps.2008.10.002
  • Wang W., Huang J., Lu Y., Yang Y., Song W., Tan R., Dai S., Zhou J. In situ micro-Raman spectroscopic study of laser-induced crystallization of amorphous silicon thin films on aluminum-doped zinc oxide substrate. J Mater Sci: Mater Electron. 2012; 23: 1300–1305. https://doi.org/10.1007/s10854-011-0588-2
  • Hassan S.S., Hubeatir K.A., Al-haddad R.M.S. Characterization and antibacterial activity of silica-coated bismuth (Bi@SiO2) nanoparticles synthesized by pulsed laser ablation in liquid. Optik (Stuttg). 2023; 273: 170453. https://doi.org/10.1016/j.ijleo.2022.170453
  • Song Y.H., Kang S.Y., Cho K.I., Yoo H.J., Kim J.H., Lee J.Y. Polycrystalline Silicon Films Formed by Solid- Phase Crystallization of Amorphous Silicon: The Substrate Effects on Crystallization Kinetics and Mechanism. MRS Online Proceedings Library. 1996; 424: 243–248. https://doi.org/10.1557/PROC-424-243
  • Kioseoglou J., Komninou P., Dimitrakopulos G.P., Antoniades I.P., Hatalis M.K., Karakostas T. Crystallization of amorphous silicon thin films: comparison between experimental and computer simulation results. J Mater Sci. 2008; 43: 3976–3981. https://doi.org/10.1007/s10853-007-2226-1
  • Golubovskaya A.G., Fakhrutdinova E.D., Svetlichnyi V.A. Bismuth silicates: preparation by pulsed laser ablation and photocatalytic activity. Proc. SPIE 12086, XV International Conference on Pulsed Lasers and Laser Applications. 2021: 120861Y. https://doi.org/10.1117/12.2612743
  • Belik Y.A., Vodyankin A.A., Fakhrutdinova E.D., Svetlichnyi V.A., Vodyankina O.V. Photoactive bismuth silicate catalysts: Role of preparation method. Journal of Photochemistry and Photobiology A: Chemistry. 2022; 425: 113670. https://doi.org/10.1016/j.jphotochem.2021.113670
  • Shabalina A.V., Fakhrutdinova E.D., Golubovskaya A.G., Kuzmin S.M., Koscheev S.V., Kulinich S.A., Svetlichnyi V.A., Vodyankina O.V. Laser-assisted preparation of highly-efficient photocatalytic nanomaterial based on bismuth silicate. Applied Surface Science. 2022; 575: 151732. https://doi.org/10.1016/j.apsusc.2021.151732
  • Ortiz-Quiñonez J.L., Vega-Verduga C., Díaz D., Zumeta-Dubé I. Transformation of Bismuth and β-Bi2O3 Nanoparticles into (BiO)2CO3 and (BiO)4(OH)2CO3 by Capturing CO2: The Role of Halloysite Nanotubes and “Sunlight” on the Crystal Shape and Size. Crystal Growth & Design. 2018; 18(8): 4334-4346. https://doi.org/10.1021/acs.cgd.8b00177
  • Yastrebinskii R.N., Pavlenko A.V., Bondarenko G.G. Structural Features of Mineral Crystalline Phases and Defectiveness of Bismuth Organosiliconate Crystals at High Temperatures. Inorganic Materials: Applied Research. 2018; 9(5): 825-831. https://doi.org/10.1134/S2075113318050313
Еще
Статья научная