Performance Evaluation of Laguerre Transform and Neural Network-based Cryptographic Techniques for Network Security

Автор: Lateef A. Akinyemi, Bukola H. Akinwole

Журнал: International Journal of Intelligent Systems and Applications @ijisa

Статья в выпуске: 3 vol.16, 2024 года.

Бесплатный доступ

As the world evolves day by day with new technologies, there is a need to design a secure network in such a way that intruders and unauthorized persons should not have access to the network as well as information regarding the personnel in any firm. In this study, a new cryptographic technique for securing data transmission based on the LaplaceLaguerre polynomial (LLP) is developed and compared to an existing auto-associative neural network technique (AANNT).The performance of the LLPT and AANNT was tested with some selected files in a MATLAB environment and the results obtained provided comparative information (in respect of AANNT versus LLPT) as follows: encryption time (1.67 ms versus 3.9931s), decryption time (1.833 ms versus 2.1172s), throughput (26.2975 Kb/s versus 0.01098 Kb/s), memory consumption (3.349 KB versus 15.958 KB). From the compared results, it shows that AANNT offers a faster processing time, higher throughput, and takes up less memory space than the LLPT. However, cryptanalysis of the AANNT is possible if the network's weight and design are known; hence, the technique is unreliable for ensuring the data integrity and confidentiality of encrypted data. The proposed LLP cryptographic algorithm is designed to provide a higher security level by making the LLP algorithm computationally tedious to invert using the standard Laplace transform inversion method. When compared to the AANN-based cryptographic technique, cracking the algorithm to uncover the encryption key takes time. This shows the strength and robustness of the proposed LLP cryptographic algorithm against attacks, as well as its suitability for solving the problem of data privacy and security when compared to the AANN-based cryptographic algorithm.

Еще

Artificial Neural Network (ANN), Cryptanalysis, Cryptographic Techniques, Laguerre Transform and Laplace Transform

Короткий адрес: https://sciup.org/15019366

IDR: 15019366   |   DOI: 10.5815/ijisa.2024.03.01

Список литературы Performance Evaluation of Laguerre Transform and Neural Network-based Cryptographic Techniques for Network Security

  • J. Alshehri and A. Alhamed, “A review paper for the role of cryptography in network security”, in 2022 IEEE 4th International, Conference on Electrical, Control and Instrumentation Engineering, 2022, pp.1-5. doi:10.1109/ICECIE55199.2022.10000338.
  • E. Omkar and D. Mohite, “Encrypting viruses”, International Journal for Research Trends and Innovation, vol. 7, no.6, 2022, pp. 2456-3315. https://ijrti.org/papers/IJRTI2206262.pdf.confidentiality.
  • S. M. Naser, “Cryptography: from the ancient history to now, its applications and a new complete numerical model”, International Journal of Statistics Studies, vol.9, no.3, pp.11-30.https://www.eajurnals.org.
  • S. Das, A.K Balmiki and K. Mazumdar, “A review on Al-ML based cyber-physical systems security for industry 4.0”, Intelligent, Cyber-Physical, System, Security for Industry. 2022, pp. 203-216. doi:10.1201/978100324134811.
  • H. Xu, K. Thakur, A.S.Kamruzzaman and M. L. Ali, “Applications of cryptography in Database: a review”, IEEE International IoT, Electronics and Mechatronics Conference, 2021, pp. 1-6. doi:10.1109/IEMTRONICS52119.2021.9422663
  • A.P. Hiwarekar, “Application of Laplace transform for cryptographic “, International Journal of Engineering and Research, vol. 5, no. 4, 2015, pp. 129-135.
  • E.O. Adeyefa, L.S.Akinola and O.D.Agbolade, “A new cryptographic scheme using the chebyshev polynomials”, IEEE International Conference in Mathematics, Computer Engineering and Computer Science, 2020, pp.1-3. doi:10.1109/ICMCECS47690.2020.240868.
  • K. Bhuvaneswari, “Mohand transform based cryptography technique”, International Journal of food and nutrition science, vol. 11, no. 3, 2022, pp. 3294-3298.
  • Z. E. Huma, J.U Rahman, M. Suleman and N. Anjum, “Cryptographic method based on natural-elzaki transforms”, imanager’s Journal on mathematics, vol.11, no.1, 2022, pp. 39-46. doi:10.26634/jmat.11.1.18511.
  • E. A. Mansour and N. K. Meftin “Mathematical modeling for cryptography using Jafari transformation method”, Periodicals of engineering and natural sciences, vol.9, no. 4, 2021, pp. 892-897.
  • M. N. Alenezi, “A study of Z-transform based encryption algorithm”, International Journal of Communication Networks and Information Security”, vol.13, no.2, 2021, pp. 302-309. doi:10.17762/ijcnis.v1312.5052.
  • N. O. Onuoha “Kamal transform technique to coupled systems of linear ordinary differential equations”, IOSR Journal of Mathematics, vol.19, no. 4, 2023, pp.24-29.
  • T. Sivakumar, Pandi Malaichamy, N. Senthilmadasamy and R. Bharathi, “An image encryption algorithm with Hermite chaotic polynomials and scan pattern”, Journal of Physics Conference. Series, vol. 1767, no. 1, 2021, pp.1-14. doi:10.1088/1742-6596/1767/1/012044
  • S. A. Osikoya, E. O Adeyefa, Jensen-based new cryptographic scheme, Journal of Nigerian Society of Physical Sciences, vol.4, 2022, pp.49-53.
  • M. T. Gencoglu, “Cryptanalysis of a new method of cryptography using Laplace transforms hyperbolic functions”, Communications in mathematics and applications, vol. 8, no. 20, 2017, pp 183-189. doi:10.26713/cma.v8i2.708
  • M. Ayush and G. Ravindra (2019), “Kamal transformation based cryptographic technique in network security involving ASCII value”, International Journal of Innovative Technology and Exploring Engineering. vol. 8, no. 12, 2019, pp. 3448-3450. doi:10.35940/ijitee.L2592.1081219.
  • J. S. Shivaji and A. P. Hiwarekar, “Cryptographic method based on Laplace-elzaki transform”, Journal of the Maharaja Sayajirao University of Baroda, vol. 55, no. 1, 2021, pp. 187-191. https://www.researchgate.net/publication/35304410_CRYPTOGRAPHIC_METHOD_BASED_ON_LAPLCE-ELZAKI_TRANFORM
  • A. K. H Sedeeg, M. M. A. Mahgoub, M. A. Saif Saheed, “An Application of the New Integral “Aboodh Transform”, Pure and Applied Journal, vol. 5, no. 5, 2016, pp 151-154. https://www.sciencepublishinggroup.com/article/10.11648.j.pamj.20160505.12.
  • S. Bhusare, S.B. Thorat, S. Sandeep, S. Seema, M.V. Ramnamurth, “Symmetric encryption algorithm for data security privacy using linear convolution sum technique”, International Journal of Emerging Technologies and Innovative Research, vol.6, no.6, 2016, pp. 7-10. https://www.jetir.org/ papers/JETIR1906N04.pdf
  • B. S. Riggan, C.Reale and N .M Nasrabadi, “Coupled auto-associative neural networks for heterogeneous face recognition, in IEEE Access, vol. 3, 2015, pp. 1620-163. doi:10.1109/ACCESS.2015.2479620.
  • M. Wang and S. Chen S, “Enhanced FM-AM based on empirical kernel map”, IEEE Transaction on Neural Networks, vol. 16, no. 3, 2005, pp. 557-564. doi:10.1109/TNN.2005.847839.
  • Z. M. Zin, “Using auto-associative neural networks to compress and visualize multidimensional data”, 11th International Conference on Ubiquitous Robots and Ambient Intelligence, 2014, pp. 408-412. doi:10.1109/URAI.2014.7057451.
  • P. Wang and C. Cox, “Study on the application of auto-associative neural network”, IEEE Proceedings, 7th International Conference on Signal Processing, vol.2, 2004, pp 1570-1573. doi:10.1109/ICOSP.2004.1441629.
  • M. Elnour, N. Meshin, and M. Al-Naemi, “Sensor fault diagnosis of multi-zone HVAC system using auto associative neural network”, IEEE Conference on Control Technology and Applications, 2019, pp.118-123. doi:10.1109/CCTA.2019 8920554.
  • W. Ha and C. Shin, “Seismic random noise attenuation in the laplace domain using singular value decomposition”, in IEEE Access, vol. 9, 2021, pp. 62029-62037. doi:10.1109/ACCESS.2021.3074648.
  • A. M. Al-Azzani, M.A.M.Rageh, G. H. Al-Gaphari, “A new cryptography scheme based on laplace transform and substitution-permutation network, International Journal of Advanced Trends in Computer Sciences and engineering”, vol.10, no. 4, 2021, pp.2658-2663.
  • M. Al-Mazmumy and A. Alsulami Aishah, “Solution of laguerre’s differential equations via modified domain decomposition method”, Journal of Applied Mathematics and Physics, vol. 11, no. 1, 2023, pp 85-100. doi: 10.4236/jamp.2023.111007.
  • A.K. Shukla, I. A.Salehbhia and J. C. Prajapati, “On the laguerre transform in two variables”, Integral transform and special functions, vol.20, no.6, 2009, pp.459-470. doi:10.1080/10652460802645818.
  • S. Wolfgang,“Special functions in physics with MATLAB”, March 2021, pp. 211-214. doi:10.1007/978-3-030-64232-7
  • M. Tuma, “Application of Laguerre functions to data compression”, European grant projects/result/research and development science, 2013, pp. 1-4. https://api.semanticscholar.org/CorpusID:37469761.
  • S. Amit and K.P. Rajesh, “Laguerre polynomial based numerical method to solve a system of generalized abel integral equations”, International Conference on Modeling, Optimization, and Computing. vol. 38, 2012, pp. 1675-1682. doi: 10.1016/j.proeng.2012.06.204.
Еще
Статья научная