Перспектива применения веществ антикворума как альтернатива антибиотикотерапии в животноводстве (обзор)
Автор: Кондрашова К.С., Косян Д.Б., Атландерова К.Н., Лебедев С.В.
Журнал: Сельскохозяйственная биология @agrobiology
Рубрика: Обзоры, проблемы
Статья в выпуске: 6 т.55, 2020 года.
Бесплатный доступ
Частое применение антибиотиков в современном животноводстве грозит расширением спектра антибиотикорезестентных бактерий. Один из механизмов, ответственных за этот процесс, - кворум сенсинг (Quorum sensing, QS). Для его реализации бактерии используют специальные сигнальные молекулы для обмена информацией - аутоиндукторы (A.A. Miller с соавт., 2011). Благодаря изучению описываемого механизма стало известно о существовании веществ, выступающих в роли ингибиторов Quorum sensing (гасители кворума) (B. Rеmy с соавт., 2018), что сделало такие исследования еще более актуальными (J. Bzdreng с соавт., 2017). В своем обзоре мы обобщили современные данные о поиске и разработке таких биологически активных соединений, способных стать альтернативой антибиотическим препаратам, применяемым в сельском хозяйстве. Среди них можно выделить бактериальные ферменты (АГЛ-лактоназы, АГЛ-ацилазы, декарбоксилазы и дезаминазы), способные деградировать сигнальные аутоиндукторы кворум сенсинга (V.C. Kalia с соавт., 2011), а также a-амилазы, b-глюканазы, липазы и протеазы, способствующие разрушению биопленки (R. Sharma с соавт., 2001). Антимикробными свойствами также обладают ферменты животных - ацилаза I (D. Paul с соавт., 2010), параоксоназа (J.F. Teiber с соавт., 2008), лактоназа; ферменты растений - лакказа (R. Al-Hussaini с соавт., 2009), аллииназа, тиолзависимый фермент и лактоназа, выделенные из чеснока и лекарственных растений (A. Adonizio с соавт., 2008); ферменты морских организмов - бромопероксидаза из водорослей Laminaria digitata (а также галогенированные фураноны из Delisea pulchra ) и альгинатные лиазы, обнаруженные в водорослях, беспозвоночных и морских микроорганизмах (S.A. Borchardt с соавт., 2001; М. Manefield с соавт., 2000). Можно также отметить антимикробные пищеварительные ферменты, используемые в качестве кормовых добавок, - фитазу (O. Adeola с соавт., 2011), ксиланазу и лизоцим (G. Cheng с соавт., 2014). Перспективными представляются исследования фитобиотиков и эфирных масел в качестве ингибиторов кворум сенсинга (В.И. Фисинин с соавт., 2018). Их ингибирующая способность проявляется благодаря сходству химической структуры некоторых растительных экстрактов и ацил-гомосерин-лактона и инактивации сигнальных молекул (R. Chevrot с соавт., 2006; F. Nazzaro с соавт., 2013). Кроме того, в качестве альтернативы рассматривается комбинированное воздействие антимикробных препаратов, которое способно дать синергетический эффект за счет разнообразия механизмов, необходимых для преодоления рецидивирующей бактериальной коммуникации и уничтожения персистирующих клеток. В состав таких полипрепаратных коктейлей может включаться сочетания антибиотиков с природными соединениями. Показана эффективность комбинации тобрамицина и некоторых растительных экстрактов (циннамальдегида и гидрата байкалина) против Burkholderia cenocepacia и Pseudomonas aeruginos (G. Brackman с соавт., 2011), широкого спектра антибиотиков - аминогликозидов (T.H. Jakobsen с соавт., 2012; M. Stenvang с соавт., 2016), хинолонов (Q. Guo с соавт., 2016), полипептидных антибиотиков (A. Furiga с соавт., 2016; Z.P. Bulman с соавт., 2017), цефалоспоринов и гликопептидов (D. Maura с соавт., 2017) и различных ингибиторов кворум сенсинга.
Кворум сенсинг, антибиотки, резистентность, бактерии, растительные экстракты, ферменты
Короткий адрес: https://sciup.org/142229442
IDR: 142229442 | DOI: 10.15389/agrobiology.2020.6.1073rus
Список литературы Перспектива применения веществ антикворума как альтернатива антибиотикотерапии в животноводстве (обзор)
- Kalia V.C., Rani A., Lal S., Cheema S., Raut C.P. Combing databases reveals potential antibiotic producers. Expert Opinion on Drug Discovery, 2007, 2(2): 211-224 (doi: 10.1517/17460441.2.2.211).
- Stanton T.B. A call for antibiotic alternatives research. Trends in Microbiology, 2013, 21(3): 111-113 (doi: 10.1016/j.tim.2012.11.002).
- Marshall B.M., Levy S.B. Food animals and antimicrobials: impacts on human health. Clinical Microbiology Reviews, 2011, 24(4): 718-733 (doi: 10.1128/CMR.00002-11).
- Виноградова К.А., Булгакова В.Г., Полин А.Н., Кожевин П.А. Устойчивость микроорганизмов к антибиотикам: резистома, ее объем, разнообразие и развитие. Антибиотики и химиотерапия, 2013, 58(5-6): 38-48.
- Castanon J.I. History of the use of antibiotic as growth promoters in European poultry feeds. Poultry Science Journal, 2007, 86(11): 2466-2471 (doi: 10.3382/ps.2007-00249).
- Borchardt R.A., Rolston K.V. Antibiotic shortages: effective alternatives in the face of a growing problem. JAAPA: official journal of the American Academy of Physician Assistants, 2013, 26(2): 13-18 (doi: 10.1097/01720610-201302000-00004).
- Cooper M.A., Shlaes D. Fix the antibiotics pipeline. Nature, 2011, 472: 32-32 (doi: 10.1038/472032a).
- Rasmussen T.B., Skindersoe M.E., Bjarnsholt T., Phipps R.K., Christensen K.B., Jensen P.O. Identity and effects of quorum sensing inhibitors produced by Penicillium species. Microbiology, 2005, 151(5): 1325-1340 (doi: 10.1099/mic.0.27715-0).
- Черкашина Н.В., Дроздова Л.И., Махортов В.Л., Васильев П.Г., Щербаков М.Г., Демина Л.В., Ильязов А.А., Сирик М. Анализ современного состояния проблемы использования антибиотиков в качестве кормовой добавки. Аграрный вестник Урала, 2011, 82(3): 39-42.
- Vranakis I., Goniotakis I., Psaroulaki A., Sandalakis V., Tselentis Y., Gevaert K. Proteome studies of bacterial antibiotic resistance mechanisms. Journal of Proteomics, 2014, 97: 88-99 (doi: 10.1016/j.jprot.2013.10.027).
- Kester J.C., Fortune S.M. Persisters and beyond: mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Critical Reviews in Biochemistry and Molecular Biology, 2014, 49(2): 91-101 (doi: 10.3109/10409238.2013.869543).
- Woo P.C., To A.P., Lau S.K., Yuen K.Y. Facilitation of horizontal transfer of antimicrobial resistance by transformation of antibiotic-induced cell-wall-deficient bacteria. Medical Hypotheses, 2003, 61(4): 503-508 (doi: 10.1016/S0306-9877(03)00205-6).
- Norman A., Hansen L.H., Serensen S.J. Conjugative plasmids: vessels of the communal gene pool. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364(1527): 2275-2289 (doi: 10.1098/rstb.2009.0037).
- Martinez J.L., Baquero F. Mutation frequencies and antibiotic resistance. Antimicrobial Agents and Chemotherapy, 2000, 44(7): 1771-1777 (doi: 10.1128/AAC.44.7.1771-1777.2000).
- Cirz R.T., Chin J.K., Andes D.R., de Crécy-Lagard V., Craig W.A., Romesberg F.E. Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biology, 2005, 3(6): e176 (doi: 10.1371/journal.pbio.0030176).
- Kohanski M.A., DePristo M.A., Collins J.J. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Molecular Cell, 2010, 37(3): 311-320 (doi: 10.1016/j.molcel.2010.01.003).
- Sánchez-Romero M.A., Casadesús J. Contribution of phenotypic heterogeneity to adaptive antibiotic resistance. Proceedings of the National Academy of Sciences, 2014, 111(1): 355-360 (doi: 10.1073/pnas.1316084111).
- Wright G.D. Bacterial resistance to antibiotics: enzymatic degradation and modification. Advanced Drug Delivery Reviews, 2005, 57(10): 1451-1470 (doi: 10.1016/j.addr.2005.04.002).
- Ramirez M.S., Tolmasky M.E. Aminoglycoside modifying enzymes. Drug Resistance Updates, 2010, 13(6): 151-171 (doi: 10.1016/j.drup.2010.08.003).
- Tillotson G.S., Theriault N. New and alternative approaches to tackling antibiotic resistance. F1000Prime Reports, 2013, 5: 51 (doi: 10.12703/P5-51).
- Wilson D.N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nature Reviews Microbiology, 2014, 12(1): 35-48 (doi: 10.1038/nrmicro3155).
- Liu L.Y., Ye C.X., Soteyome T., Zhao X.H., Xia J., Xu W.Y., Mao Y.Z., Peng R.X., Chen J.X., Xu Z.B. Inhibitory effects of two types of food additives on biofilm formation by foodborne pathogens. Microbiology Open, 2019, 8(9): e00853 (doi: 10.1002/mbo3.853).
- Li X.Z., Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs, 2013, 69(12): 15551623 (doi: 10.2165/11317030-000000000-00000).
- Poole K., Russell A., Lambert P. Mechanisms of antimicrobial resistance: opportunities for new targeted therapies. Advanced Drug Delivery Reviews, 2005, 57(10): 1443-1445 (doi: 10.1016/j.addr.2005.05.001).
- Alekshun M.N., Levy S.B. Molecular mechanisms of antibacterial multidrug resistance. Cell, 2007, 128(6): 1037-1050 (doi: 10.1016/j.cell.2007.03.004).
- Kumar S., Varela M.F. Biochemistry of bacterial multidrug efflux pumps. International Journal of Molecular Science, 2012, 13(4): 4484-4495 (doi: 10.3390/ijms13044484).
- Wasaznik A., Grinholc M., Bielawski K.P. Active efflux as the multidrug resistance mechanism. Postepy higienyi medycyny doswiadczalnej (Online), 2009, 63: 123-133.
- Boucher H.W., Talbot G.H., Bradley J.S., Edwards J.E., Gilbert D., Rice L.B. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clinical Infectious Diseases, 2009, 48(1): 1-2 (doi: 10.1086/595011).
- Miller A.A., Miller P.F. Emerging trends in antibacterial discovery: answering the call to arms. Caister Academic Press, Norfolk, UK, 2011.
- Anwar H., Dasgupta M.K., Costerton J.W. Testing the susceptibility of bacteria in biofilms to antibacterial agents. Antimicrobial Agents and Chemotherapy, 1990, 34(11): 2043-2046 (doi: 10.1128/aac.34.11.2043).
- Huma N., Shankar P., Kushwah J., Bhushan A., Joshi J., Mukherjee T. Diversity and polymorphism in AHL-lactonase gene (aiiA) of Bacillus. Journal of Microbiology and Biotechnology, 2011, 21(10): 1001-1011 (doi: 10.4014/jmb.1105.05056).
- Jamuna Bai A., Rai V.R. Bacterial quorum sensing and food industry. Comprehensive Reviews in Food Science and Food Safety, 2011, 10(3): 183-1193 (doi: 10.1111/J.1541-4337.2011.00150.X).
- Remy B., Mion S., Plener L., Elias M., Chabrrnre E., Daudé D. Interference in bacterial quorum sensing: a biopharmaceutical perspective. Frontiers in Pharmacology, 2018, 9: 203 (doi: 10.3389/fphar.2018.00203).
- Bzdreng J., Daude D., Remy B., Jacquet P., Plener L., Elias M. Biotechnological applications of quorum quenching enzymes. Chemico-Biological Interactions, 2017, 267: 104-115 (doi: 10.1016/j.cbi.2016.05.028).
- Хмель И.А. Quorum-sensing регуляция экспрессии генов: фундаментальные и прикладные аспекты, роль в коммуникации бактерий. Микробиология, 2006, 75(4): 457-464.
- Heilmann S., Krishna S., Kerr B. Why do bacteria regulate public goods by quorum sensing? — how the shapes of cost and benefit functions determine the form of optimal regulation. Frontiers in Microbiology, 2015, 6: 767 (doi: 10.3389/fmicb.2015.00767).
- Monnet V., Juillard V., Gardan R. Peptide conversations in Gram-positive bacteria. Critical Reviews in Microbiology, 2016, 42(3): 339-351 (doi: 10.3109/1040841X.2014.948804).
- Schuster M., Sexton D.J., Diggle S.P., Greenberg E.P. Acyl-homoserine lactone quorum sensing: from evolution to application. Annual Review of Microbiology, 2013, 67: 43-63 (doi: 10.1146/annurev-micro-092412-155635).
- Lee J., Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell, 2015, 6(1): 26-41 (doi: 10.1007/s13238-014-0100-x).
- Plener L., Lorenz N., Reiger M., Ramalho T., Gerland U., Jung K. The phosphorylation flow of the Vibrio harveyi quorum-sensing cascade determines levels of phenotypic heterogeneity in the population. Journal of Bacteriology, 2015, 197(10): 1747-1756 (doi: 10.1128/JB.02544-14).
- Hawver L.A., Jung S.A., Ng W.L. Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiology Reviews, 2016, 40(5): 738-752 (doi: 10.1093/femsre/fuw014).
- Zhou L., Zhang L.H., Cámara M., He Y.W. The DSF family of quorum sensing signals: diversity, biosynthesis, and turnover. Trends in Microbiology, 2017, 25(4): 293-303 (doi: 10.1016/j.tim.2016.11.013).
- Tiaden A., Hilbi H. a-Hydroxyketone synthesis and sensing by Legionella and Vibrio. Sensors, 2012, 12(3): 2899-2919 (doi: 10.3390/s120302899).
- Kendall M.M., Sperandio V. Quorum sensing by enteric pathogens. Current Opinion in Gastroenterology, 2007, 23(1): 10-15 (doi: 10.1097/M0G.0b013e3280118289).
- Heeb S., Fletcher M.P., Chhabra S.R., Diggle S.P., Williams P., Cаmara M. Quinolones: from antibiotics to autoinducers. FEMS Microbiology Reviews, 2011, 35(2): 247-274 (doi: 10.1111/j.1574-6976.2010.00247.x).
- Chen X., Schauder S., Potier N., Van Dorsselaer A., Pelczer I., Bassler B. L. Structural identification of a bacterial quorum-sensing signal containing boron. Nature, 2002, 415: 545-549 (doi: 10.1038/415545a).
- Dong Y.H., Xu J. L., Li X.Z., Zhang, L. H. AiiA, an enzyme that inactivates the acylhomoser-ine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proceedings of the National Academy of Sciences, 2000, 97(7): 3526-3531 (doi: 10.1073/pnas.97.7.3526).
- Pumbwe L., Skilbeck C.A., Wexler H.M. Presence of quorum-sensing systems associated with multidrug resistance and biofilm formation in Bacteroides fragilis. Microbial Ecology, 2008, 56(3): 412-419 (doi: 10.1007/s00248-007-9358-3).
- Zhao X., Yu Z., Ding T. Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms, 2020, 8(3): 425 (doi: 10.3390/microorganisms8030425).
- Tang K., Zhang X.-H. Quorum quenching agents: resources for antivirulence therapy. Marine Drugs, 2014, 12(6): 3245-3282 (doi: 10.3390/md12063245).
- Park J., Jagasia R., Kaufmann G.F., Mathison J.C., Ruiz D.I., Moss J.A. Infection control by antibody disruption of bacterial quorum sensing signaling. Chemistry & Biology, 2007, 14(10): 1119-1127 (doi: 10.1016/j.chembiol.2007.08.013).
- Kato N., Morohoshi T., Nozawa T., Matsumoto H., Ikeda T. Control of gram-negative bacterial quorum sensing with cyclodextrin immobilized cellulose ether gel. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 56: 55-59 (doi: 10.1007/s10847-006-9060-y).
- Kato N., Tanaka T., Nakagawa S., Morohoshi T., Hiratani K., Ikeda T. Control of virulence factor expression in opportunistic pathogens using cyclodextrin immobilized gel. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57: 419-423 (doi: 10.1007/s10847-006-9228-5).
- Morohoshi T., Tokita K., Ito S., Saito Y., Maeda S., Kato N. Inhibition of quorum sensing in gram-negative bacteria by alkylamine-modified cyclodextrins. Journal of Bioscience and Bioengineering, 2013, 116(2): 175-179 (doi: 10.1016/j.jbiosc.2013.01.022).
- Fetzner S. Quorum quenching enzymes. Journal of Biotechnology, 2015, 201: 2-14 (doi: 10.1016/j.jbiotec.2014.09.001).
- Carlier A., Chevrot R., Dessaux Y., Faure D. The assimilation of gamma-butyrolactone in Agrobacterium tumefaciens C58 interferes with the accumulation of the N-acyl-homoserine lactone signal. Molecular Plant-Microbe Interactions, 2004, 17(9): 951-957 (doi: 10.1094/MPMI.2004.17.9.951).
- Parsek M.R., Val D.L., Hanzelka B.L., Cronan J.E. Jr., Greenberg E.P. Acyl homoserine-lactone quorum-sensing signal generation. Proceedings of the National Academy of Sciences, 1999, 96(8): 4360-4365 (doi: 10.1073/pnas.96.8.4360).
- Hentzer M., Wu H., Andersen J.B., Riedel K., Rasmussen T.B., Bagge N. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO Journal, 2013, 22(15): 3803-3815 (doi: 10.1093/emboj/cdg366).
- Dell'Acqua G., Giacometti A., Cironi O., Ghiselli R., Saba V., Scalise G. Suppression of drug-resistant Staphylococcal infections by the quorum-sensing inhibitor RNAIII-inhibiting peptide. Journal of Infectious Diseases, 2004, 190(2): 316-320 (doi: 10.1086/386546).
- Amara N., Krom B.P., Kaufmann G.F., Meijler M.M. Macromolecular inhibition of quorum sensing: enzymes, antibodies, and beyond. Chemical Reviews, 2011, 111(1): 195-208 (doi: 10.1021/cr100101c).
- Ozer E.A., Pezzulo A., Shih D.M., Chun C., Furlong C., Lusi, A.J. Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing. FEMS Microbiology Lettters, 2005, 253(1): 29-37 (doi: 10.1016/j.femsle.2005.09.023).
- Kalia V.C., Purohit H.J. Quenching the quorum sensing system: potential antibacterial drug targets. Critical Reviews in Microbiology, 2011, 37(2): 121-140 (doi: 10.3109/1040841X.2010.5324790).
- Xavier K.B., Bassler B.L. Interference with AI-2-mediated bacterial cell-cell communication. Nature, 2005, 437: 750-753 (doi: 10.1038/nature03960).
- Singh R.P., Desouky S.E., Nakayama J. Quorum quenching strategy targeting gram-positive pathogenic bacteria. Advances in Experimental Medicine and Biology, 2016, 901: 109-130 (doi: 10.1007/5584_2016_1).
- Delago A., Mandabi A., Meijler M. M. Natural quorum sensing inhibitors — small molecules, big messages. Israel Journal of Chemistry, 2016, 56(5): 310-320 (doi: 10.1002/ijch.201500052).
- Ueda A., Attila C., Whiteley M., Wood T.K. Uracil influences quorum sensing and biofilm formation in Pseudomonas aeruginosa and fluorouracil is an antagonist. Microbial Biotechnology, 2009, 2(1): 62-74 (doi: 10.1111/j.1751-7915.2008.00060.x).
- Swatton J.E., Davenport P.W., Maunders E.A., Griffin J.L., Lilley K.S., Welch M. Impact of azithromycin on the quorum sensing-controlled proteome of Pseudomonas aeruginosa. PLoS ONE, 2016, 11(1): e0147698 (doi: 10.1371/journal.pone.0147698).
- Defoirdt T., Brackman G., Coenye T. Quorum sensing inhibitors: how strong is the evidence? Trends in Microbiology, 2013, 21(12): 619-624 (doi: 10.1016/j.tim.2013.09.006).
- Nalca Y., Jansch L., Bredenbruch F., Geffers R., Buer J., Haussler S. Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach. Antimicrobial Agents and Chemotherapy, 2006, 50(5): 1680-1688 (doi: 10.1128/AAC.50.5.1680-1688.2006).
- Weiland-Brauer N., Kisch M.J., Pinnow N., Liese A., Schmitz R.A. Highly effective inhibition of biofilm formation by the first metagenome-derived AI-2 quenching enzyme. Frontiers in Microbiology, 2016, 7: 1098 (doi: 10.3389/fmicb.2016.01098).
- Bjarnsholt T., Jensen P.0., Burmelle M., Hentzer M., Haagensen J.A., Hougen H.P. Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorumsensing dependent. Microbiology, 2005, 151(2): 373-383 (doi: 10.1099/mic.0.27463-0).
- Seal B.S., Lillehoj H.S., Donovan D.M., Gay C.G. Alternatives to antibiotics: a symposium on the challenges and solutions for animal production. Animal Health Research Reviews, 2013, 14(1): 78-87 (doi: 10.1017/S1466252313000030).
- Hanafi E.M., Danial E.N. Natural antimicrobials in the pipeline and possible synergism with antibiotics to overcome microbial resistance. Asian Journal of Pharmaceutical and Clinical Research, 2019, 12(4): 15-21 (doi: 10.22159/ajpcr.2019.v12i4.30926).
- Augustin M., Ali-Vehmas T., Atroshi F. Assessment of enzymatic cleaning agents and disinfectants against bacterial biofilms. Journal of Pharmacy and Pharmaceutical Sciences, 2004, 7(1): 55-64.
- Longhi C., Scoarughi G.L., Poggiali F., Cellini A., Carpentieri A., Seganti L. Protease treatment affects both invasion ability and biofilm formation in Listeria monocytogenes. Microbial Pathogenesis, 2008, 45(1): 45-52 (doi: 10.1016/j.micpath.2008.01.007).
- Miao J., Pangule R.C., Paskaleva E.E., Hwang E.E., Kane R.S., Linhardt R.J. Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials, 2011, 32(36): 9557-9567 (doi: 10.1016/j.biomaterials.2011.08.080).
- Kiri N., Archer G., Climo M.W. Combinations of lysostaphin with betalactams are synergistic against oxacillin-resistant Staphylococcus epidermidis. Antimicrobial Agents and Chemotherapy, 2002, 46(6): 2017-2020 (doi: 10.1128/aac.46.6.2017-2020.2002).
- Lian Z., Ma Z., Wei J., Liu H. Preparation and characterization of immobilized lysozyme and evaluation of its application in edible coatings. Process Biochemistry, 2012, 47(2): 201-208 (doi: 10.1016/J.PR0CBI0.2011.10.031).
- Абатуров А.Е. Полисахаридразрушающие ферменты как агенты, диспергирующие бактериальные биопленки. Здоровье ребенка, 2020, 15(4): 271-278 (doi: 10.22141/22240551.15.4.2020.208478).
- Molobela I.P., Cloete T.E., Mervyn B. Protease and amylase enzymes for biofilm removal and degradation of extracellular polymeric substances (EPS) produced by Pseudomonas fluorescens bacteria. African Journal of Microbiology Research, 2010, 4(14): 1515-1524.
- Romero M., Martin-Cuadrado A.B., Roca-Rivada A., Cabello A.M., Otero A. Quorum quenching in cultivable bacteria from dense marine coastal microbial communities. FEMS Microbiology Ecology, 2011, 75(2): 205-217 (doi: 10.1111/j.1574-6941.2010.01011.x).
- Park S.Y., Hwang B.J., Shin M.H., Kim J.A., Kim H.K., Lee J.K. N-acyl-homoserine lacto-nase producing Rhodococcus spp. with different AHL-degrading activities. FEMS Microbiology Letters, 2006, 261(1): 102-108 (doi: 10.1111/j.1574-6968.2006.00336.x).
- Uroz S., Oger P.M., Chapelle E., Adeline M.T., Faure D., Dessaux Y.A. Rhodococcus qsdA-encoded enzyme defines a novel class of large spectrum quorum-quenching lactonases. Applied and Environmental Microbiology, 2008, 74(5): 1357-1366 (doi: 10.1128/AEM.02014-07).
- Bentley S.D., Chater K.F., Cerdeco-Tarraga A.M., Challis G.L., Thomson N.R., James K.D. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 2002, 417: 141-147 (doi: 10.1038/417141a).
- Kumar S., Kikon K., Upadhyay A., Kanwar S.S., Gupta R. Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3. Protein Expression and Purification, 2005, 41(1): 34-44 (doi: 10.1016/j.pep.2004.12.010).
- Sharma R., Chisti Y., Banerjee U.C. Production, purification, characterization, and applications of lipases. Biotechnology Advances, 2001, 19(8): 627-662 (doi: 10.1016/s0734-9750(01)00086-6).
- Paul D., Kim Y.S., Ponnusamy K., Kweon J.H. Application of quorum quenching to inhibit biofilm formation. Environmental Engineering Science, 2009, 26(8): 1319-1324 (doi: 10.1089/ees.2008.0392).
- Teiber J.F., Horke S., Haines D.C., Chowdhary P.K., Xiao J., Kramer G.L. Dominant role of paraoxonases in inactivation of the Pseudomonas aeruginosa quorum-sensing signal N-(3-oxododecanoyl)-L-homoserine lactone. Infection and Immunity, 2008, 76(6): 2512-2519 (doi: 10.1128/IAI.01606-07).
- Stoltz D.A., Ozer E.A., Ng C.J., Yu J.M., Reddy S.T., Lusis A.J. Paraoxonase-2 deficiency enhances Pseudomonas aeruginosa quorum sensing in murine trachea epithelia. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2007, 292(4): 852-860 (doi: 10.1152/ajplung.00370.2006).
- Al-Hussaini R., Mahasneh A.M. Microbial growth and quorum sensing antagonist activities of herbal plants extracts. Molecule, 2009, 14(9): 3425-3435 (doi: 10.3390/molecules14093425).
- Adonizio A., Kong K.F., Mathee K. Inhibition of quorum sensingcontrolled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrobial Agents and Chemotherapy, 2008, 52(1): 198-203 (doi: 10.1128/AAC.00612-07).
- Fatima Q., Zahin M., Khan M.S., Ahmad I. Modulation of quorum sensing controlled behaviour of bacteria by growing seedling, seed and seedling extracts of leguminous plants. Indian Journal of Medical Microbiology, 2010, 50: 238-242 (doi: 10.1007/s12088-010-0025-x).
- Borchardt S.A., Allain E.J., Michels J.J., Stearns G.W., Kelly R.F., McCoy W.F. Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Applied and Environmental Microbiology, 2001, 67(7): 3174-3179 (doi: 10.1128/AEM.67.7.3174-3179.2001).
- Manefield M., Harris L., Rice S.A., de Nys R., Kjelleberg S. Inhibition of luminescence and virulence in the black tiger prawn (Penaeus monodon) pathogen Vibrio harveyi by intercellular signal antagonists. Applied and Environmental Microbiology, 2000, 66(5): 2079-2084 (doi: 10.1128/aem.66.5.2079-2084.2000).
- Ren D., Bedzyk L.A., Ye R.W., Thomas S.M., Wood T.K. Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system of Escherichia coli. Biotechnology and Bioengineering, 2004, 88(5): 630-642 (doi: 10.1002/bit.20259).
- Alkawash M.A., Soothill J.S., Schiller N.L. Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS, 2006, 114(2): 131-138 (doi: 10.1111/j. 1600-0463.2006.apm_356.x).
- Lamppa J.W., Ackerman M.E., Lai J.I., Scanlon T.C., Griswold K.E. Genetically engineered alginate lyase-PEG conjugates exhibit enhanced catalytic function and reduced immunoreac-tivity. PLoS ONE, 2011, 6(2): e17042 (doi: 10.1371/journal.pone.0017042).
- Bedford M.R., Cowieson A.J. Exogenous enzymes and their effects on intestinal microbiology. Animal Feed Science and Technology, 2012, 173(1-2): 76-85 (doi: 10.1016/j.anifeedsci.2011.12.018).
- Adeola O., Cowieson A.J. Board invited review: opportunities and challenges in using exogenous enzymes to improve no ruminant animal production. Journal of Animal Science, 2011, 89(10): 3189-3218 (doi: 10.2527/jas.2010-3715).
- Cheng G., Hao H., Xie S., Wang X., Dai M, Huang L. Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Frontiers in Microbiology, 2014, 5: 217 (doi: 10.3389/fmicb.2014.00217).
- Thallinger B., Prasetyo E.N., Nyanhongo G.S., Guebitz G.M. Antimicrobial enzymes: An emerging strategy to fight microbes and microbial biofilms. Biotechnology Journal, 2013, 8(1): 97-109 (doi: 10.1002/biot.201200313).
- Vondruskova H., Slamova R., Trckova M., Zraly Z., Pavlik I. Alternatives to antibiotic growth promoters in prevention of diarrhoea in weaned piglets: a review. Veterinary Medicine, 2010, 55(5): 199-224 (doi: 10.17221/2998-VETMED).
- Hashemi S.R., Davoodi H. Herbal plants and their derivatives as growth and health promoters in animal nutrition. Veterinary Research Communications, 2011, 35(3): 169-180 (doi: 10.1007/s11259-010-9458-2).
- Abreu A.C., McBain A.J., Simoes M. Plants as sources of new antimicrobials and resistance-modifying agents. Natural Product Reports, 2012, 29(9): 1007-1021 (doi: 10.1039/c2np20035j). Zanchi R., Canzi E., Molteni L., Scozzoli M. Effect of Camellia sinensis L. whole plant extract on piglet intestinal ecosystem. Annals of Microbiology, 2008, 58: 147-152 (doi: 10.1007/BF03179459).
- Manzanilla E.G., Perez J.F., Martin M., Kamel C., Baucells F., Gasa J. Effect of plant extracts and formic acid on the intestinal equilibrium of early-weaned pigs. Journal of Animal Science, 2004, 82(11): 3210-3218 (doi: 10.2527/2004.82113210X).
- Namkung H., Li M., Gong J., Yu H., Cottrill M., De Lange C.F.M. Impact of feeding blends of organic acids and herbal extracts on growth performance, gut microbiota and digestive function in newly weaned pigs. Canadian Journal of Animal Science, 2004, 84(4): 697-704 (doi: 10.4141/A04-005).
- Borovan L. Plant alkaloids enhance performance of animals and improve the utilizability of amino acids. Krmivarstvi, 2004, 6: 36-37 (in Czech).
- Tatara M.R., Sliwa E., Dudek K., Gawron A., Piersiak T., Dobrowolski P. Aged garlic extract and allicin improve performance and gastrointestinal tract development of piglets reared in artificial sow. Annals of Agricultural and Environmental Medicine, 2008, 15(1): 63-69.
- Oetting L.L., Utiyama C.E., Giani P.A., Ruiz U.D., Miyada V.S. Effects of herbal extracts and antimicrobials on apparent digestibility, performance, organs morphometry and intestinal histology of weanling pigs. Brazilian Journal of Animal Science, 2006, 35(4): 1389-1397 (doi: 10.1590/S1516-35982006000500019).
- Costa L.B., PanhozaTse M.L., Miyada V.S. Herbal extracts as alternatives to antimicrobial growth for weanling pigs. Brazilian Journal of Animal Science, 2007, 36(3): 589-595 (doi: 10.1590/S1516-35982007000300011).
- Hashemi S.R., Davoodi H. Phytogenics as new class of feed additive in poultry industry. Journal of Animal and Veterinary Advances, 2010, 9(17): 2295-2304 (doi: 10.3923/javaa.2010.2295.2304).
- Windisch W., Schedle K., Plitzner C., Kroismayr A. Use of phytogenic products as feed additives for swine and poultry. Journal of Animal Science, 2008, 86: E140-E148 (doi: 10.2527/jas.2007-0459).
- Simxes M., Bennett R.N., Rosa E.A. Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Natural Product Reports, 2009, 26(6): 746-757 (doi: 10.1039/b821648g).
- Vikram A., Jayaprakasha G.K., Jesudhasan P.R., Pillai S.D., Patil B.S. Suppression of bacterial cell-cell signaling, biofilm formation and type III secretion system by citrus flavonoids. Journal of Applied Microbiology, 2010, 109(2): 515-527 (doi: 10.1111/j.1365-2672.2010.04677.x).
- Chevrot R., Rosen R., Haudecoeur E., Cirou A., Shelp B.J., Ron E. GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proceedings of the National Academy of Sciences, 2006, 103(19): 7460-1464 (doi: 10.1073/PNAS.0600313103).
- Nazzaro F., Fratianni F., Coppola R. Quorum sensing and phytochemicals. International Journal of Molecular Sciences, 2013, 14(6): 12607-12619 (doi: 10.3390/ijms140612607).
- Zhao W.H., Hu Z.Q., Hara Y., Shimamura T. Inhibition by epigallocatechin gallate (EGCg) of conjugative R plasmid transfer in Escherichia coli. Journal of Infection and Chemotherapy, 2001, 7(3): 195-197 (doi: 10.1007/s101560100035).
- Girennavar B., Cepeda M.L., Soni K.A., Vikram A., Jesudhasan P., Jayaprakasha G.K. Grapefruit juice and its furocoumarins inhibits autoinducer signaling and biofilm formation in bacteria. International Journal of Food Microbiology, 2008, 125(2): 204-208 (doi: 10.1016/j.ijfoodmicro.2008.03.028).
- Hamoud R., Zimmermann S., Reichling J., Wink M. Synergistic interactions in two-drug and three-drug combinations (thymol, EDTA and vancomycin) against multi drug resistant bacteria including E. coli. Phytomedicine, 2014, 21(4): 443-447 (doi: 10.1016/j.phymed.2013.10.016).
- Brackman G., Cos P., Maes L., Nelis H.J., Coenye T. Quorum sensing inhibitors increase the susceptibility of bacterial bio films to antibiotics in vitro and in vivo. Antimicrobial Agents and Chemotherapy, 2011, 55(6): 2655-2661 (doi: 10.1128/AAC.00045-11).
- Brackman G., Hillaert U., Van Calenbergh S., Nelis H.J., Coenye T. Use of quorum sensing inhibitors to interfere with bioflm formation and development in Burkholderia multivorans and Burkholderia cenocepacia. Research in Microbiology, 2009, 160(2): 144-151 (doi: 10.1016/j.resmic.2008.12.003).
- Yang L., Rybtke M.T., Jakobsen T.H., Hentzer M., Bjarnsholt T., Givskov M. Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors. Antimicrobial Agents and Chemotherapy, 2009, 53(6): 2432-2443 (doi: 10.1128/AAC.01283-08).
- Wei Q., Bhasme P., Wang Z., Wang L., Wang S., Zeng Y., Wang Y., Ma L. Z., Li Y. Chinese medicinal herb extract inhibits PQS-mediated quorum sensing system in Pseudomonas aeru-ginosa. Journal of Ethnopharmacology, 2020, 248: 112-272 (doi: 10.1016/j.jep.2019.112272).
- Truchado P., Gimenez-Bastida J.A., Larrosa M., Castro-Ibanez I., Espin J.C., Tomas-Barberan F.A., Garcia-Conesa M.T., Allende A. Inhibition of quorum sensing (QS) in Yersinia enterocolitica by an orange extract rich in glycosylated flavanones. Journal of Agricultural and Food Chemistry, 2012, 60(36): 8885-8894 (doi: 10.1021/jf301365a).
- Мазнев H.^ Энциклопедия лекарственных растений. М., 2004. Фисинин В.И., Ушаков А.С., Дускаев Г.К., Казачкова Н.М., Нуржанов Б.С., Рахматул-лин Ш.Г., Левахин Г.И. Изменение иммунологических и продуктивных показателей у цыплят-бройлеров под влиянием биологически активных веществ из экстракта коры дуба. Сельскохозяйственная биология, 2018, 53(2): 385-392 (doi: 10.15389/agrobiology.2018.2.385rus).
- Толмачева А.А. Лекарственные растения и их компоненты как ингибиторы системы quorum sensing первого типа у бактерий (на примере Chromobacterium violaceum). Автореф. канд. дис. Саратов, 2016.
- Deryabin D.G., Tolmacheva A.A. Antibacterial and anti-quorum sensing molecular composition derived from quercus cortex (Oak bark) extract. Molecules, 2015, 20(9): 17093-17108 (doi: 10.3390/molecules200917093).
- Дускаев Г.К., Дроздова Е.А., Алешина Е.С., Безрядина А.С. Оценка воздействия на кишечную микрофлору птицы веществ, обладающих антибиотическим, пробиотическим и анти-Quorum Sensing эффектами. Вестник Оренбургского государственного университета, 2017, 211(11): 84-87.
- Buryakov N.P., Buryakova M.A. Influence of oak extract on rumen microorganisms in feeding nitrate diets to cows. IV International conference «Actual points for veterinary homoeopathy». St. Peterburg, 2006: 168-171.
- Warnke P.H., Becker S.T., Podschun R., Sivananthan S., Springer I.N., Russo P.A. The battle against multi-resistant strains: renaissance of antimicrobial essential oils as a promising force to fight hospital-acquired infections. Cranio-Maxillofacial Surgery, 2009, 37(7): 392397 (doi: 10.1016/j.jcms.2009.03.017).
- Mulyaningsih S., Sporer F., Zimmermann S., Reichling J., Wink M. Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine, 2010, 17(13): 1061-1066 (doi: 10.1016/j.phymed.2010.06.018).
- Van Vuuren S.F., Suliman S., Viljoen A.M. The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Letters in Applied Microbiology, 2009, 48(4): 440-446 (doi: 10.1111/j.1472-765X.2008.02548.x).
- Niu C., Afre S., Gilbert E.S. Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Letters in Applied Microbiology, 2006, 43(5): 489-494 (doi: 10.1111/J. 1472-765X.2006.02001.X).
- Sarica S., Ciftci A., Demir E., Kilinc K., Yildirim Y. Use of an antibiotic growth promoter and two herbal natural feed additives with and without exogenous enzymes in wheat based broiler diets. South African Journal of Animal Science, 2005, 35(1): 61-72 (doi: 10.4314/SAJAS.V35I1.4050).
- Markoishvili K., Tsitlanadze G., Katsarava R., Morris J.G. Jr., Sulakvelidze A. A novel sustained-release matrix based on biodegradable poly (ester amide)s and impregnated with bacte-riophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. International Journal of Dermatology, 2002, 41(7): 453-458 (doi: 10.1046/j.1365-4362.2002.01451.x).
- Balaban N., Gov Y., Bitler A., Boelaert J.R. Prevention of Staphylococcus aureus biofilm on dialysis catheters and adherence to human cells. Kidney International, 2003, 63(1): 340-345 (doi: 10.1046/j. 1523- 1755.2003.00733.x).
- Giacometti A., Cirioni O., Ghiselli R., Dell'Acqua G., Orlando F., D'Amato G. RNAIII-inhibiting peptide improves efficacy of clinically used antibiotics in a murine model of staphylococcal sepsis. Peptides, 2005, 26(2): 169-175 (doi: 10.1016/j.peptides.2004.09.018).
- Starkey M., Lepine F., Maura D., Bandyopadhaya A., Lesic B., He J. Identification of antivirulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS Pathogens, 2014, 10(8): e1004321 (doi: 10.1371/journal.ppat.1004321).
- Maura D., Rahme L.G. Pharmacological inhibition of the Pseudomonas aeruginosa MvfR quorum sensing system interferes with biofilm formation and potentiates antibiotic-mediated biofilm disruption. Antimicrobial Agents and Chemotherapy, 2017, 61(12): e01362-17 (doi: 10.1128/AAC.01362-17).
- Jakobsen T.H., van Gennip M., Phipps R.K., Shanmugham M.S., Christensen L.D., Alhede M., Skindersoe M.E., Rasmussen T.B., Friedrich K., Uthe F., Jensen P.0., Moser C., Nielsen K.F., Eberl L., Larsen T.O., Tanner D., НшШу N., Bjarnsholt T., Givskov M. Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrobial Agents and Chemotherapy, 2012, 56(5): 2314-2325 (doi: 10.1128/AAC.05919-11).
- Stenvang M., Dueholm M.S., Vad B.S., Seviour T., Zeng G., Geifman-Shochat S. Epigallo-catechin gallate remodels overexpressed functional amyloids in Pseudomonas aeruginosa and increases biofilm susceptibility to antibiotic treatment. Journal of Biological Chemistry, 2016, 291(51): 26540-26553 (doi: 10.1074/jbc.M116.739953).
- Guo Q., Wei Y., Xia B., Jin Y., Liu C., Pan X. Identification of a small molecule that simultaneously suppresses virulence and antibiotic resistance of Pseudomonas aeruginosa. Scientific Reports, 2016, 6: 19141 (doi: 10.1038/srep19141).
- Furiga A., Lajoie B., El Hage S., Baziard G., Roques C. Impairment of Pseudomonas aeruginosa biofilm resistance to antibiotics by combining the drugs with a new quorum-sensing inhibitor. Antimicrobial Agents and Chemotherapy, 2016, 60: 1676-1686 (doi: 10.1128/AAC.02533-15).
- Bulman Z.P., Ly N.S., Lenhard J.R., Holden P.N., Bulitta J.B., Tsuji B.T. Influence of rhlR and lasR on polymyxin pharmacodynamics in Pseudomonas aeruginosa and implications for quorum sensing inhibition with azithromycin. Antimicrobial Agents and Chemotherapy, 2017, 61: e00096-16 (doi: 10.1128/AAC.00096-16).
- Das M.C., Sandhu P., Gupta P., Rudrapaul P., De U.C., Tribedi P. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: a combinatorial study with azithromycin and gen-tamicin. Scientific Reports, 2015, 6: 23347 (doi: 10.1038/srep23347).
- Gupta P., Chhibber S., Haq'ai K. Efficacy of purified lactonase and ciprofloxacin in preventing systemic spread of Pseudomonas aeruginosa in murine burn wound model. Burns, 2015, 41(1): 153-162 (doi: 10.1016/j.burns.2014.06.009).