Перспективы применения аналитического подхода для диагностики микотоксикозов животных (обзор)

Автор: Кононенко Г.П., Зотова Е.В.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы

Статья в выпуске: 5 т.59, 2024 года.

Бесплатный доступ

Отравления животных при потреблении кормов, содержащих микотоксины, остаются важнейшей проблемой животноводства (M.M. Zaki с соавт., 2012; C. Gruber-Dorninger с соавт., 2019). В конце XX столетия и в последующие два десятилетия мировой наукой достигнут значительный прогресс в изучении механизмов действия этих природных токсикантов и получены убедительные доказательства возможности использования микотоксинов и их метаболитов как биохимических маркеров для подтверждения факта поступления в организм животных (L. Escrivá с соавт., 2017; A. Vidal с соавт., 2018). В Российской Федерации активно формируется национальная база данных по встречаемости и содержанию микотоксинов в кормах (Г.П. Кононенко с соавт., 2020), однако проблема дифференциации интоксикаций микогенной природы у животных до сих пор остается нерешенной. Рекомендованные к применению схемы диагностики, в которых предусмотрен учет эпизоотологических данных, клинической картины, патологоанатомических изменений, результатов гистологических, микотоксикологических исследований и экспериментальное воспроизведение интоксикаций (МУ, 1985, 1986), не позволяют однозначно и своевременно определять их причину. В настоящем обзоре представлена современная информация, необходимая для разработки аналитических приемов диагностики токсикозов, вызванных 4-дезоксиниваленолом (ДОН), Т-2 токсином (Т-2), зеараленоном (ЗЕН), фумонизином В1 (ФВ1) и охратоксином А (ОА). Обсуждаются основные пути их трансформации in vivo у свиней, жвачных, птицы, суммированы сведения о метаболитах в биологических жидкостях и экскретах, пригодных для прижизненной диагностики. Применение высокоэффективной жидкостной хроматографии в сочетании с масс-спектрометрическим детектированием позволило идентифицировать ДОН, деэпокси-ДОН и их глюкурониды в крови и моче у свиней и жвачных (H.E. Schwartz-Zimmermann с соавт., 2017), ДОН, деэпокси-ДОН и сульфат ДОН - в крови и помете птицы (I. Riahi с соавт., 2021), уточнить характер множественной метаболизации Т-2 (E. Janin с соавт., 2021) и ЗЕН (P. Llorens с соавт., 2022), а также подтвердить присутствие в свободном виде ФВ1 в фекалиях свиней (P. Dilkin с соавт., 2010) и ОА в помете птицы (S. Yang с соавт., 2015). Важным достижением последних лет стало экспериментальное доказательство корреляции между дозами ДОН и ЗЕН, поступающими с кормами, и содержанием индикаторных веществ в матрицах-мишенях у дойных коров (J. Winkler с соавт., 2014; 2015) и свиней (L. Gambacorta с соавт., 2013; S. Thanner с соавт., 2016; T. Van Limbergen с соавт., 2017). Схемы на основе хроматографического и иммуноферментного анализа уже применяются для контроля биомаркеров этих токсинов на животноводческих фермах Японии (M. Tagaki с соавт., 2011; H. Hasunuma с соавт., 2012; O.S. Widodo с соавт., 2022). К приоритетным направлениям развития аналитического подхода относятся усовершенствование и разработка альтернативных методов, уточнение условий пробоподготовки и порядка отбора проб, синтез и аттестация калибрантов, необходимых для количественных измерений, а также изучение возможности использования других биоматериалов, в частности волосяного и перьевого покрова в диагностических целях.

Еще

Дезоксиниваленол, т-2 токсин, зеараленон, фумонизин в1, охратоксин а, биомаркеры, микотоксикозы, диагностика

Короткий адрес: https://sciup.org/142243773

IDR: 142243773   |   DOI: 10.15389/agrobiology.2024.5.847rus

Список литературы Перспективы применения аналитического подхода для диагностики микотоксикозов животных (обзор)

  • Miller J.D. Mycotoxins in food and feed: a challenge for the twenty-first century. In: Biology of microfungi /D.-W. Li (ed.). Springer Link, 2016: 469-493 (doi: 10.1007/978-3-319-29137-6_19).
  • Tola M., Kebede B. Occurrence, importance and control of mycotoxins: a review. Cogent Food & Agriculture, 2016, 2(1): 1191103 (doi: 10.1080/23311932.2016.1191103).
  • Ali S., Freire L.G.D., Rezende V.T., Norman M., Ullah S., Abdullah, Badshah G., Afridi M.S., Tonin F.G., De Oliveira C.A.F. Occurrence of mycotoxins in foods: unraveling the knowledge gaps on their persistence in food production systems. Foods, 2023, 12, 4314 (doi: 10.3390/foods12234314).
  • Escrivá L., Font G., Manyes L., Berrada H. Studies on the presence of mycotoxins in biological samples: An overview. Toxins, 2017, 9(8): 251 (doi: 10.3390/toxins9080251).
  • Schelstraete W., Devreese M., Croubels S. Comparative toxicokinetics of Fusarium mycotoxins in pigs and humans. Food and Chemical Toxicology, 2020, 137: 111140 (doi: 10.1016/j.fct.2020.111140).
  • Sun Y., Jiang J., Mu R., Lin R., Wen J., Deng Y. Toxicokinetics and metabolism of deoxynivalenol in animals and humans. Archives of Toxicology, 2022, 96(10): 2639-2654 (doi: 10.1007/s00204-022-03337-8).
  • Turner P.C., Flannery B., Isitt C., Ali M., Pestka J. The role of biomarkers in evaluating human health concerns from fungal contaminants in food. Nutrition Research Reviews, 2012, 25(1): 162- 179 (doi: 10.1017/S095442241200008X).
  • Vidal A., Mengelers M., Yang Sh., De Saeger S., De Boerve M. Mycotoxin biomarkers of exposure: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 2018, 17(5): 1127-1155 (doi: 10.1111/1541-4337.12367).
  • Marín S., Ramos A.J., Sanchis V., Cano-Sancho G. An overview of mycotoxin biomarker application in exposome-health studies. Current Opinion in Food Science, 2021, 39: 31-35 (doi: 10.1016/j.cofs.2020.12.011).
  • Gambacorta L., Pinton P., Avantaggiato G., Oswald I.P., Solfrizzo M. Grape pomace, an agricultural byproduct reducing mycotoxin absorption: in vivo assessment in pig using urinary biomarkers. Journal of Agricultural and Food Chemistry, 2016, 64(35): 6762-6771 (doi: 10.1021/acs.jafc.6b02146).
  • Lauwers M., Croubels S., Letor B., Gougoulias C., Devreese M. Biomarkers of exposure as a tool for efficacy testing of a mycotoxin detoxifier in broiler chicken and pigs. Toxins, 2019, 11(4): 187 (doi: 10.3390/toxins11040187).
  • Ji J., Yu J., Ye Y., Sheng L., Fang J., Yang Y., Sun X. Biodegradation methods and product analysis of zearalenone and its future development trend: a review. Food Control, 2023, 145: 109469 (doi: 10.1016/j.foodcont.2022.109469).
  • Fushimi Y., Takagi M., Hasunuma H., Uno S., Kokushi E., Watanabe U., Liu J., Marey M.A., Miyamoto A., Otoi T., Deguchi E., Fink-Gremmels J. Application of mycotoxin adsorbent to cattle feed contaminated with zearalenone: urinary zearalenone excretion and association with anti-Müllerian hormone. World Mycotoxin Journal, 2014, 7(3): 367-378 (doi: 10.3920/WMJ2013.1672).
  • Winkler J., Kersten S., Meyer U., Stinshoff H., Locher L., Rehage J., Wrenzycki C., Engelhardt U.H., Dänicke S. Diagnostic opportunities for evaluation of the exposure of dairy cows to the mycotoxins deoxynivalenol (DON) and zearalenone (ZEN): reliability of blood plasma, bile and follicular fluid as indicators. Journal of Animal Physiology and Animal Nutrition, 2015, 99(5): 847-855 (doi: 10.1111/jpn.12285).
  • Takagi M., Uno S., Kokushi E., Sato F., Wijayagunawardane M.M.P., Fink-Gremmels J. Measurement of urinary concentrations of the mycotoxins zearalenone and sterigmatocystin as biomarkers of exposure in mares. Reproduction in Domestic Animals, 2018, 53(1): 68-73 (doi: 10.1111/rda.13054).
  • Zaki M.M., El-Midani S.A., Shaheen H.M., Rizzi L. Mycotoxins in animals: occurrence, effects, prevention and management. Journal of Toxicology and Environmental Health Sciences, 2012, 4(1): 13-28 (doi: 10.5897/JTEHS11.072).
  • Gruber-Dorninger C., Jenkins T., Schatzmayr G. Global mycotoxin occurrence in feed: a ten year survey. Toxins, 2019, 11: 375 (doi: 10.3390/toxins11070375).
  • Кононенко Г.П., Буркин А.А., Зотова Е.В. Микотоксикологический мониторинг. Сообщение 1. Полнорационные комбикорма для свиней и птицы (2009-2018 гг.). Ветеринария сегодня, 2020, 1(32): 60-65 (doi: 10.29326/2304-196X-2020-1-32-60-65).
  • Кононенко Г.П., Буркин А.А., Зотова Е.В. Микотоксикологический мониторинг. Сообщение 2. Зерно пшеницы, ячменя, овса, кукурузы. Ветеринария сегодня, 2020, 2(33): 139-145 (doi: 10.29326/2304-196X-2020-2-33-139-145).
  • Кононенко Г.П., Буркин А.А., Зотова Е.В. Микотоксикологический мониторинг. Сообщение 3. Кормовая продукция от переработки зернового сырья. Ветеринария сегодня, 2020, 3(34): 213-219 (doi: 10.29326/2304-196X-2020-3-34-213-219).
  • Рекомендации по диагностике и профилактике охратоксикоза у свиней. Утв. ГУВ МСХ СССР от 21.03.1985 г.
  • Методические указания по диагностике и профилактике зеараленонтоксикоза свиней и птиц. Утв. ГУВ МСХ СССР от 5.12.1985 г.
  • Методические указания по диагностике и профилактике патулинотоксикоза у свиней. Утв. ГУВ МСХ СССР от 28.06.1986 г.
  • Pestka J.J. Deoxynivalenol: toxicity, mechanisms and animal health risks. Animal Feed Science and Technology, 2007, 137(3-4): 283-298 (doi: 10.1016/j.anifeedsci.2007.06.006).
  • Kuca K., Dohnal V., Jezkova A., Jun D. Metabolic pathways of T-2 toxin. Current Drug Metabolism, 2008, 9(1): 77-82 (doi: 10.2174/138920008783331176).
  • Zinedine A., Soriano J.M., Moltó J.C., Mañes J. Review on the toxicity, occurrence, metabolism, detoxication, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food and Chemical Toxicology, 2007, 45(1): 1-18 (doi: 10.1016/j.fct.2006.07.030).
  • Shephard G.S., Van Der Westhuizen L., Sewram V. Biomarkers of exposure to fumonisin mycotoxins: a review. Food Additives & Contaminants, 2007, 24(10): 1196-1201 (doi: 10.1080/02652030701513818).
  • Ringot D., Chango A., Schneider Y.-J., Larondelle Y. Toxicokinetics and toxicodynamics of ochratoxin A, an update. Chemico-Biological Interactions, 2006, 159(1): 18-46 (doi: 10.1016/j.cbi.2005.10.106).
  • Dänicke S., Valenta H., Döll S. On the toxicokinetics and the metabolism of deoxynivalenol (DON) in the pig. Archives of Animal Nutrition, 2004, 58(2): 169-180 (doi: 10.1080/00039420410001667548).
  • Broekaert N., Devreese M., Van Bergen T., Schauvliege S., De Boevre M., De Saeger S., Vanhaecke L., Berthiller F., Michlmayr H., Malachová A., Adam G., Vermeulen A., Croubels S. In vivo contribution of deoxynivalenol-3-β-D-glucoside to deoxynivalenol exposure in broiler chickens and pigs: oral bioavailability, hydrolysis and toxicokinetics. Archives of Toxicology, 2017, 91: 699-712 (doi: 10.1007/s00204-016-1710-2).
  • Dänicke S., Goyarts T., Valenta H., Razzazi E., Böhm J. On the effects of deoxynivalenol (DON) in pig feed on growth performance, nutrients utilization and DON metabolism. Journal of Animal and Feed Sciences, 2004, 13(4): 539-556 (doi: 10.22358/jafs/67624/2004).
  • Dänicke S., Brüssow K.-P., Valenta H., Ueberschär K.-H., Tiemann U., Schollenberger M. On the effects of graded levels of Fusarium toxin contaminated wheat in diets for gilts on feed intake, growth performance and metabolism of deoxynivalenol and zearalenone. Molecular Nutrition & Food Research, 2005, 49(10): 932-943 (doi: 10.1002/mnfr.200500050).
  • Brezina U., Rempe I., Kersten S., Valenta H., Humpf H.U., Dänicke S. Diagnosis of intoxications of piglets fed with Fusarium toxin contaminated maize by the analysis of mycotoxin residues in serum, liquor and urine with LC-MS/MS. Archives of Animal Nutrition, 2014, 68(6): 425-447 (doi: 10.1080/1745039X.2014.973227).
  • Van Limbergen T., Devreese M., Croubels S., Broekaert N., Michiels A., De Saeger S., Maes D. Role of mycotoxins in herds with and without problems with tail necrosis in neonatal pigs. Veterinary Record, 2017, 181(20): 539 (doi: 10.1136/vr.104385).
  • Dänicke S., Valenta H., Klobasa F., Döll S., Ganter M., Flachowsky G. Effects of graded levels of Fusarium toxin contaminated wheat in diets for fattening pigs on growth performance, nutrient digestibility, deoxynivalenol balance and clinical serum characteristics. Archives of Animal Nutrition, 2004, 58(1): 1-17 (doi: 10.1080/0003942031000161045).
  • Nagl V., Woechtl B., Schwartz-Zimmermann H.E., Henning-Pauka I., Moll W.-D., Adam G., Berthiller F. Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in pigs. Toxicology Letters, 2014, 229(1): 190-197 (doi: 10.1016/j.toxlet.2014.06.032).
  • Schwartz-Zimmermann H.E., Hametner C., Nagl V., Fiby I., Macheiner L., Winkler J., Dänicke S., Clark E., Pestka J.J., Berthiller F. Glucuronidation of deoxynivalenol (DON) by different animal species: identification of iso-DON glucuronides and iso-epoxy-DON glucuronides as novel DON metabolites in pigs, rats, mice, and cows. Archives of Toxicology, 2017, 91(12): 3857-3872 (doi: 10.1007/s00204-017-2012-z).
  • Valgaeren B., Théron L., Croubels S., Devreese M., De Baere S., Van Pamel E., Daeseleire E., De Boevre M., De Saeger S., Vidal A., Di Mavundu J.D., Fruhmann P., Adam G., Callebaut A., Bayrou C., Frisée V., Rao A.-S., Knapp E., Sartelet A., Pardon B., Deprez P., Antonissen G. The role of roughage provision on the absorption and disposition of the mycotoxin deoxynivalenol and its acetylated derivatives in calves: from field observations to toxicokinetics. Archives of Toxicology, 2019, 93(2): 293-310 (doi: 10.1007/s00204-018-2368-8).
  • Seeling K., Dänicke S., Valenta H., Van Egmond H.P., Schothorst R.C., Jekel A.A., Lebzien P., Schollenberger M., Razzazi-Fazeli E., Flachowsky G. Effects of Fusarium toxin-contaminated wheat and feed intake level on the biotransformation and carry-over of deoxynivalenol in dairy cows. Food Additives and Contaminants, 2006, 23(10): 1008-1020 (doi: 10.1080/02652030600723245).
  • Keese C., Meyer U, Valenta H., Schollenberger M., Starke A., Weber I.-A., Rehage J., Breves G., Dänicke S. No carry over of unmetabolised deoxynivalenol in milk of dairy cows fed high concentrate proportions. Molecular Nutrition & Food Research, 2008, 52(12): 1514-1529 (doi: 10.1002/mnfr.200800077).
  • Winkler J., Kersten S., Meyer U., Engelhardt U., Dänicke S. Residues of zearalenone (ZEN), deoxynivalenol (DON) and their metabolites in plasma of dairy cows fed Fusarium contaminated maize and their relationships to performance parameters. Food and Chemical Toxicology, 2014, 65: 196-204 (doi: 10.1016/j.fct.2013.12.020).
  • Wan D., Huang L., Pan Y., Wu Q., Chen D., Tao Y., Wang X., Liu Z., Li J., Wang L., Yuan Z. Metabolism, distribution, and excretion of deoxynivalenol with combined techniques of radiotracing, high-performance liquid chromatography ion trap time-of-flight mass-spectrometry, and online radiometric detection. Journal of Agricultural and Food Chemistry, 2014, 62(1): 288-296 (doi: 10.1021/jf4047946).
  • Devreese M., Antonissen G., Broekaert N., De Mil T., De Baere S., Vanhaecke I., De Backer P., Croubels S. Toxicokinetic study and oral bioavailability of deoxynivalenol in turkey poults, and comparative biotransformation between broilers and turkeys. World Mycotoxin Journal, 2015, 8(4): 533-539 (doi: 10.3920/WMJ2014.1843).
  • Schwartz-Zimmermann H.E., Fruhmann P., Dänicke S., Wiesenberger G., Caha S., Weber J., Berthiller F. Metabolism of deoxynivalenol and deepoxy-deoxynivalenol in broiler chickens, pullets, roosters and turkeys. Toxins, 2015, 7(11): 4706-4729 (doi: 10.3390/toxins7114706).
  • Riahi I., Marquis V., Pérez-Vendrell A.M., Brufau J., Esteve-Garcia E., Ramos A.J. Effects of deoxynivalenol-contaminated diets on metabolic and immunological parameters in broiler chickens. Animals, 2021, 11(1): 147 (doi: 10.3390/ani11010147).
  • Dänicke S.,Valenta H., Ueberschär K.-H., Matthes S. On the interactions between Fusarium toxin-contaminated wheat and non-polysaccharide hydrolyzing enzymes in turkey diets on performance, health and carry-over of deoxynivalenol and zearalenone. British Poultry Science, 2007, 48(1): 39-48 (doi: 10.1080/00071660601148161).
  • Osselaere A., Devreese M., Goossens J., Vandenbroucke V., Baere S.D., Backer P.D., Croubels S. Toxicokinetic study and absolute oral bioavailability of deoxynivalenol, T-2 toxin and zearalenone in broiler chickens. Food and Chemical Toxicology, 2013, 51(1): 350-355 (doi: 10.1016/j.fct.2012.10.006).
  • Riahi I., Ramos A.J., Pérez-Vendrell A.M., Marquis V. A toxicokinetic study reflecting the absorption, distribution, metabolism and excretion of deoxynivalenol in broiler chickens. Journal of Applied Animal Research, 2021, 49(1): 284-288 (doi: 10.1080/09712119.2021.1946403).
  • Yunus A.W., Valenta H., Abdel-Raheem S.M., Döll S., Dänicke S., Böhm J. Blood plasma levels of deoxynivalenol and its de-epoxy metabolite in broilers after a single oral dose of the toxin. Mycotoxin Research, 2010, 26: 217-220 (doi: 10.1007/s12550-010-0057-4).
  • Fruhmann P.,Warth B., Hametner C., Berthiller F., Horkel E., Adam G., Sulyok M., Krska R., Flöhlich J. Synthesis of deoxynivalenol-3-β-DO-glucuronide for its as biomarker for dietary deoxynivalenol exposure. World Mycotoxin Journal, 2012, 5(2): 127-132 (doi: 10.3920/WMJ2011.1366).
  • Uhlig S., Ivanova L., Faeste C.K. Enzyme-assisted synthesis and structural characterization of the 3-, 8-, and 15-glucuronides of deoxynivalenol. Journal of Agricultural and Food Chemistry, 2013, 61(8): 2006-2012 (doi: 10.1021/jf304655d).
  • Uhlig S., Ivanova L., Faeste C.K. Correction to enzyme-assisted synthesis and structural characterization of the 3-, 8-, and 15-glucuronides of deoxynivalenol. Journal of Agricultural and Food Chemistry, 2016, 64(18): 3732-3732 (doi: 10.1021/acs.jafc.6b01413).
  • Li Y., Wang Z., Beirer R.C., Shen J., De Smet D., De Saeger S., Zhang S. T-2 toxin, a trichothecene mycotoxin: review of toxicity, metabolism, and analytical methods. Journal of Agricultural abd Food Chemistry, 2011, 59(8): 3441-3453 (doi: 10.1021/jf200767q).
  • Sun Y., Zhang G., Zhao H., Znen J., Hu F., Fang B. Liquid chromatography-tandem mass spectrometry method for toxicokinetics, tissue distribution, and excretion studies of T-2 toxin and its major metabolites in pigs. Journal of Chromatography B, 2014, 958: 75-82 (doi: 10.1016/j.jchromb.2014.03.010).
  • Wu Q., Dohnal V., Huang L., Kuča K., Yuan Z. Metabolic pathways of trichothecenes. Drug Metabolism Reviews, 2010, 42(2): 250-267 (doi: 10.3109/03602530903125807).
  • Sun Y.X., Yao X., Shi S.N., Zhang G.J., Xu L.X., Liu Y.J., Fang B.H. Toxicokinetics of T-2 toxin and its major metabolites in broiler chickens after intravenous and oral administration. Journal of Veterinary Pharmacology and Therapeutics, 2015, 38(1): 80-85 (doi: 10.1111/jvp.12142).
  • Yang S., De Boevre M., Zhang H., De Ruyck K., Sun F., Zhang J., Jin Y., Li Y., Wang Z., Zhang S., Zhou J., Li Y., De Saeger S. Metabolism of T-2 toxin in farm animals and human in vitro and in chicken in vivo using ultra high-performance liquid chromatography-quadrupole/ time-of-flight hybrid mass-spectrometry along with online hydrogen/deuterium exchange technique. Journal of Agricultural and Food Chemistry, 2017, 65(33): 7217-7227 (doi: 10.1021/acs.jafc.7b02575).
  • Janik E., Niemcewicz M., Podogrocki M., Ceremuga M., Stela M., Bijak M. T-2 toxin — the most toxic trichothecene mycotoxin: metabolism, toxicity, and decontamination strategies. Molecules, 2021, 26(22): 6868 (doi: 10.3390/molecules26226868).
  • Liu J., Applegate T. Zearalenone (ZEN) in livestock and poultry: dose, toxicokinetics, toxicity and estrogenicity. Toxins, 2020, 12(6): 377 (doi: 10.3390/toxins12060377).
  • Wu K., Ren C., Gong Y., Gao X., Rajput S.A., Qi D., Wand S. The insensitive mechanism of poultry to zearalenone: a review. Animal Nutrition, 2021, 7(3): 587-594 (doi: 10.1016/j.aninu.2021.01.002).
  • Llorens P., Herrera M., Juan-García A., Payá J.J., Moltó J.C., Ariño A., Juan C. Biomarkers of exposure to zearalenone in in vivo and in vitro studies. Toxins, 2022, 14(5): 291 (doi: 10.3390/toxins14050291).
  • Binder S.B., Schwartz-Zimmermann H.E., Varda E., Bichl G., Michlmayr H., Adam G., Berthiller F. Metabolism of zearalenone and its major modified forms in pigs. Toxins, 2017, 9(2): 56 \(doi: 10.3390/toxins9020056).
  • Goyarts T., Dänicke S., Valenta H., Ueberschär K.-H. Carry-over of Fusarium toxins (deoxynivalenol and zearalenone) from naturally contaminated wheat for the pig. Food Additives and Contaminants, 2007, 24(4): 369-380 (doi: 10.1080/02652030600988038).
  • Brezina U., Valenta H., Rempe I., Kersten S., Humpf H.U., Dänicke S. Development of a liquid chromatography tandem mass spectrometry method for the simultaneous determination of zearalenone, deoxynivalenol and their metabolites in pig serum. Mycotoxin Research, 2014, 30: 171-186 (doi: 10.1007/s12550-014-0200-8).
  • Fleck S.C., Churchwell M.I., Doerge D.R. Metabolism and pharmacokinetics of zearalenone following oral and intravenous administration in juvenile female pigs. Food and Chemical Toxicology, 2017, 106(part A): 193-201 (doi: 10.1016/j.fct.2017.05.048).
  • Catteuw A., Broekaert N., De Baere S., Lauwers M., Gasthuys E., Huybrechts B., Callebaut A., Ivanova L., Uhlig S., De Boevre M., De Saeger S., Gehring R., Devreese M., Croubels S. Insights into in vivo absolute oral bioavailability, biotransformation, and toxicokinetics of zearalenone, - zearalenol, -zearalenol, zearalenone-14-glucoside, and zearalenone-14-sulfate in pigs. Journal of Agricultural and Food Chemistry, 2019, 67(12): 3448-3458 (doi: 10.1021/acs.jafc.8b05838).
  • Catteuw A., Devreese M., De Baere S., Antonissen G., Huybrechts B., Ivanova L., Uhlig S., Martens A., De Saeger S., De Boevre M., Croubels S. Toxicokinetic studies in piglets reveal agerelated differences in systemic exposure to zearalenone, zearalenone-14-glucoside, and zearalenone- 14-sulfate. Journal of Agricultural and Food Chemistry, 2020, 68(29): 7757-7764 (doi: 10.1021/acs.jafc.0c01943).
  • Zöllner P., Jodlbauer J., Kleinova M., Kahlbacher H., Kuhn T., Hochsteiner W., Linder W. Concentration levels of zearalenone and its metabolites in urine, muscle tissue, and liver samples of pigs fed with mycotoxin-contaminated oats. Journal of Agricultural and Food Chemistry, 2002, 50(9): 2494-2501 (doi: 10.1021/jf0113631).
  • Döll S., Dänicke S., Ueberschär K.H., Valenta H., Schnurrbusch U., Ganter M., Klobasa F., Flachowsky G. Effects of graded levels of Fusarium toxin contaminated maize in diets for female weaned piglets. Archives of Animal Nutrition, 2003, 57(5): 311-334 (doi: 10.1080/00039420310001607680).
  • Seeling K., Dänicke S., Ueberschä K.H., Lebzien P., Flachowsky G. On the effects of Fusarium toxin-contaminated wheat and the feed intake level on the metabolism and carry over of zearalenone in dairy cows. Food Additives and Contaminants, 2005, 22(9): 847-855 (doi: 10.1080/02652030500163708).
  • Dänicke S., Keese C., Meyer U., Starke A., Konoshita A., Rehage J. Zearalenone (ZEN) metabolism and residue concentrations in physiological specimens of dairy cows exposed long-term to ZEN-contaminated diets differing in concentrate feed proportions. Archives of Animal Nutrition, 2014, 68(6): 492-506 (doi: 10.1080/1745039X.2014.973236).
  • Falkauskas R., Bakutis B, Jovaišiené J., Vaičiuliené G., Gerulis G., Kerziené S., Jacevičiené I., Jacevičius E., Baliukoniené V. Zearalenone and its metabolites in blood serum, urine, and milk of dairy cows. Animals, 2022, 12(13): 1651 (doi: 10.3390/ani12131651).
  • Kleinova M., Zöllner P., Kahlbacher H., Hochsteiner W., Lindner W. Metabolic profiles of the mycotoxin zearalenone and of the growth promoter zeranol in urine, liver, and muscle of heifers. Journal of Agricultural and Food Chemistry, 2002, 50(17): 4769-4776 (doi: 10.1021/jf020160p).
  • Winkler J., Kersten S., Valenta H., Hüther L., Meyer U., Engelhardt U., Dänicke S. Simultaneous determination of zearalenone, deoxynivalenol and their metabolites in bovine urine as biomarkers of exposure. World Mycotoxin Journal, 2015, 8(1): 63-74 (doi: 10.3920/wmj2014.1745).
  • Mikula H., Hametner C., Berthiller F., Warth B., Krska R., Adam G., Fröhlich J. Fast and reproducible chemical synthesis of zearalenone-14-β,D-glucuronide. World Mycotoxin Journal, 2012, 5(3): 289-296 (doi: 10.3920/WMJ2012.1404).
  • De Andrés F., Zougagh M., Castañeda G., Ríos A. Determination of zearalenone and its metabolites in urine samples by liquid chromatography with electrochemical detection using a carbon nanotube-modified electrode. Journal of Chromatography A, 2008, 1212(1-2): 54-60 (doi: 10.1016/j.chroma.2008.09.112).
  • Gutzwiller A., Gafner J.L., Silacci P. Urinary zearalenone measured with ELISA as biomarker of zearalenone exposure in pigs. Mycotoxin Research, 2014, 30(4): 187-190 (doi: 10.1007/s12550-014-0198-y).
  • Takagi M., Uno S., Kokushi E., Shiga S., Mukai S., Kuriyagawa T., Takagaki K., Hasunuma H., Matsumoto D., Okamoto K., Shahada F., Chenga T., Deguchi E., Fink-Gremmels J. Measurement of urinary zearalenone concentrations for monitoring natural feed contamination in cattle herds: on-farm trials. Journal of Animal Sciences, 2011, 89(1): 287-296 (doi: 10.2527/jas.2010-3306).
  • Hasunuma H., Takagi M., Kawamura O., Taniguchi C., Nakamura M., Chuma T., Uno S., Kokushi E., Matsumoto D., Tshering C., Deguchi E., Fink-Gremmels J. Natural contamination of dietary rice straw with zearalenone and urinary zearalenone concentrations in cattle herd. Journal of Animal Sciences, 2012, 90(5): 1610-1616 (doi: 10.2527/jas.2011-4579).
  • Widodo O.S., Etoh M., Kokushi E., Uno S., Yamato O., Pambudi D., Okawa H., Taniguchi M., Lamid M., Takagi M. Practical application of urinary zearalenone monitoring system for feed hygiene management of a Japanese black cattle breeding herd – The relationship between monthly anti-Müllerian hormone and serum amyloid A concentrations. Toxins, 2022, 14(2): 143 (doi: 10.3390/toxins14020143).
  • Devreese M., Antonissen G., Broekaert N., De Baere S., Vanhaecke I., De Backer P., Croubels S. Comparative toxicokinetics, absolute oral bioavailability, and biotransformation of zearalenone in different poultry species. Journal of Agricultural and Food Chemistry, 2015, 63(20): 5092-5098 (doi: 10.1021/acs.jafc.5b01608).
  • Buranatragool K., Poapolathep S., Isariyodom S., Imsilp K., Klangkaew N., Poapolathep A. Dispositions and tissue residue of zearalenone and its metabolites -zearalenol and β-zearalenol in broilers. Toxicology Reports, 2015, 2: 351-356 (doi: 10.1016/j.toxrep.2014.12.011).
  • Yang S., Zhang H., Sun F., De Ruyck K., Zhang J., Jin Y., Li Y., Wang Z., Zhang S., De Saeger S., Zhou J., Li Y., De Boevre M. Metabolic profile of zearalenone in liver microsomes from different species and its in vivo metabolism in rats and chickens using ultra-performance liquid chromatography-quadrupole/time-of-flight hybrid mass-spectrometry. Journal of Agricultural and Food Chemistry, 2017, 65(51): 11292-11303 (doi: 10.1021/acs.jafc.7b04663).
  • Gambacorta L., Solfrizzo M., Visconti A., Powers S., Cossalter A.M., Pinton P., Oswald I.P. Validation study on urinary biomarkers of exposure for aflatoxin B1, ochratoxin A, fumonisin B1, deoxynivalenol and zearalenone in piglets. World Mycotoxin Journal, 2013, 6(3): 299-308 (doi: 10.3920/wmj2013.1549).
  • Dilkin P., Zorzete P., Mallmann C.A., Gomes J.D.F., Utiyama C.E., Oetting L.L., Corrêa B. Toxicological effects of chronic low doses of aflatoxin B1 and fumonisin B1-contaminating Fusarium moniliforme culture material in weaned piglets. Food and Chemical Toxicology, 2003, 41(10): 1345-1353 (doi: 10.1016/S0278-6915(03)00137-6).
  • Dilkin P., Direito G., Simas M.M.S., Mallmann C.A., Corrêa B. Toxicokinetics and toxicological effects of single oral dose of fumonisin B1 containing Fusarium verticilliodes culture material in weaned piglets. Chemico-Biological Interactions, 2010, 185(3): 157-162 (doi: 10.1016/j.cbi.2010.03.025).
  • Souto P.C.M.C., Jager A.V., Tonin F.G., Petta T., Di Gregório M., Cossalter A.-M., Pinton P., Oswald I.P., Rottinghaus G.E., Oliveira C.A.F. Determination of fumonisin B1 levels in body fluids and hair from piglets fed fumonisin B1-contaminated diets. Food and Chemical Toxicology, 2017, 108(part A): 1-9 (doi: 10.1016/j.fct.2017.07.036).
  • Guere P. Fusariotoxins in avian species: toxicokinetics, metabolism and persistence in tissues. Toxins, 2015, 7(6): 2289-2305 (doi: 10.3390/toxins7062289).
  • Fodor J., Balogh K., Weber M., Mézes M., Kametler L., Pósa R., Mamet R., Bauer J.M., Horn P., Kovács F., Kovács M. Absorption, distribution and elimination of fumonisin B1 metabolites in weaned piglets. Food Additives and Contaminants, 2008, 25(1): 88-96 (doi: 10.1080/02652030701546180).
  • Schertz H., Dänicke S., Frahm J., Schatzmayr D., Dohnal I., Bichl G., Schwartz-Zimmermann H.E., Colicchia S., Breves G., Teifke J.P., Kluess J. Biomarker evaluation and toxic effects of an acute oral and systemic fumonisin exposure of pigs with a special focus on dietary fumonisin esterase supplementation. Toxins, 2018, 10(7): 296 (doi: 10.3390/toxins10070296).
  • Antonissen G., De Baere S., Novak B., Schatzmayr D., den Hollander D., Devreese M., Croubels S. Toxicokinetics of hydrolyzed fumonisin B1 after single oral or intravenous bolus to broiler chickens fed a control or a fumonisins-contaminated diet. Toxins, 2020, 12(6): 413 (doi: 10.3390/toxins12060413).
  • Ominski K.H., Frohlich A.A., Marquardt R.R., Crow G.H., Abramson D. The incidence and distribution of ochratoxin A in western Canadian swine. Food Additives and Contaminants, 1996, 13(2): 185-198 (doi: 10.1080/02652039609374397).
  • Höhler D., Südekum K.-H., Wolffram S., Frohlich A.A., Marquardt R.R. Metabolism and excretion of ochratoxin A fed to sheep. Journal of Animal Science, 1999, 77(5): 1217-1223 (doi: 10.2527/1999.7751217x).
  • Yang S., Zhang H., De Saeger S., De Boevre M., Sun F., Zhang S., Wang Z. In vitro and in vivo metabolism of ochratoxin A: A comparative study of using ultra-performance liquid chromatography- quadrupole/time-of-flight hybrid mass-spectrometry. Analytical and Bioanalytical Chemistry, 2015, 407(13): 3579-3589 (doi: 10.1007/s00216-015-8570-0).
  • Dekant R., Langer M., Lupp M., Chilaka C.A., Mally A. In vitro and in vivo analysis of ochratoxin A-derived glucuronides and mercapturic acids as biomarkers of exposure. Toxins, 2021, 13(8): 587 (doi: 10.3390/toxins13080587).
  • Solfizzo M., Gambacorta L., Lattanzio V.M.T., Powers S., Visconti A. Simultaneous LS-MS/MS determination of aflatoxin M1, ochratoxin A, deoxynivalenol, de-epoxydeoxynivalenol,  and β- zearalenols and fumonisin B1 in urine as multi-biomarker method to assess exposure to mycotoxins. Analytical and Bioanalytical Chemistry, 2011, 401(9): 2831-2841 (doi: 10.1007/s00216-011-5354-z).
  • Tkaczyk A., Jedziniak P., Zielonka Ł., Dąbrowski M., Ochodzki P., Rudawska A. Biomarkers of deoxynivalenol, citrinin, ochratoxin A and zearalenone in pigs after exposure to naturally contaminated feed close to guidance values. Toxins, 2021, 13(11): 750 (doi: 10.3390/toxins13110750).
  • Thanner S., Czeglédi L., Schwartz-Zimmermann H.E., Bertthiller F., Gutzwiller A. Urinary deoxynivalenol (DON) and zearalenone (ZEA) as biomarkers of DON and ZEA exposure of pigs. Mycotoxin Research, 2016, 32(2): 69-75 (doi: 10.1007/s12550-016-0241-2).
  • Schulz A.-K., Kersten S., Dänicke S., Coenen M., Vervuert I. Effects of deoxynivalenol in natural contaminated wheat on feed intake and health status of horses. Mycotoxin Research, 2015, 31(4): 209-216 (doi: 10.1007/s12550-015-0234-6).
  • Gambacorta L., Olsen M., Solfrizzo M. Pig urinary concentration of mycotoxins and metabolites reflects regional differences, mycotoxin intake and feed contaminations. Toxins, 2019, 11(7): 378 (doi: 10.3390/toxins11070378).
  • Valenta H. Chromatographic methods for the determination of ochratoxin A in animal and human tissues and fluids. Journal of Chromatography A, 1998, 815(1): 75-92 (doi: 10.1016/S0021-9673(98)00163-0).
  • Razzazi-Fazeli E., Böhm J., Jarukamjorn K., Zentek J. Simultaneous determination of major Btrichothecenes and the de-epoxy-metabolite of deoxynivalenol in pig urine and maize using highperformance liquid chromatography—mass spectrometry. Journal of Chromatography B, 2003, 796(1): 21-33 (doi: 10.1016/S1570-0232(03)00604-4).
  • Thieu N.Q., Pettersson H. Zearalenone, deoxynivalenol and aflatoxin B1 and their metabolites in pig urine as biomarkers for mycotoxin exposure. Mycotoxin Research, 2009, 25(2): 59-66 (doi: 10.1007/s12550-009-0009-z).
  • Song S., Ediage E.N., Wu A., De Saeger S. Development and application of salting-out assisted liquid/liquid extraction for multi-mycotoxin biomarkers analysis in pig urine with high performance liquid chromatography/tandem mass spectrometry. Journal of Chromatography A, 2013, 1292: 111-120 (doi: 10.1016/j.chroma.2012.10.071).
  • Guo W.R., Ou S.X., Long W.P., Wei Z., Yan X., Yu L. Simultaneous detection method for mycotoxins and their metabolites in animal urine by using impurity absorption purification followed by liquid chromatography-tandem mass detection. Journal of Chromatography & Separation Techniques, 2015, 6(7): 1 (doi: 10.4172/2157-7064.1000308).
  • De Baere S., Goossens J., Osselaere A., Devreese M., Vandenbroucke V., De Backer P., Croubels S. Quantitative determination of T-2 toxin, HT-2 toxin, deoxynivalenol and deepoxy-deoxynivalenol in animal body fluids using LC-MS/MS detection. Journal of Chromatography B, 2011, 879(24): 2403-2415 (doi: 10.1016/j.jchromb.2011.06.036).
  • De Baere S., Osselaere A., Devreese M., Vanhaecke L., De Backer P., Croubels S. Development of a liquid-chromatography tandem mass spectrometry and ultra-high-performance liquid chromatography high-resolution mass spectrometry method for the quantitative determination of zearalenone and its major metabolites in chicken and pig plasma. Analytica Chimica Acta, 2012, 756: 37-48 (doi: 10.1016/j.aca.2012.10.027).
  • Devreese M., De Baere S., De Backer P., Croubels S. Quantitative determination of several toxicological important mycotoxins in pig plasma using multi-mycotoxin and analyte-specific high performance liquid chromatography-tandem mass spectrometric methods. Journal of Chromatography A, 2012, 1257: 74-80 (doi: 10.1016/j.chroma.2012.08.008).
  • Lauwers M., De Baere S., Letor B., Rychlik M., Croubels S., Devreese M. Multi LC-MS/MS and LC-HRMS methods for determination of 24 mycotoxins including major phase I and II biomarker metabolites in biological matrices from pigs and broiler chickens. Toxins, 2019, 11(3): 171 (doi: 10.3390/toxins11030171).
  • Hermanson G.T. Bioconjugate techniques. Academic Press, San Diego-New York-Boston-London- Sydney-Tokyo-Toronto, 1996.
  • Tkaczyk A., Jedziniak P. Dilute-and-shoot HPLC-UV method for determination of urinary creatinine as a normalization tool in mycotoxin biomonitoring in pigs. Molecules, 2020, 25(10), 2445 (doi: 10.3390/molecules25102445).
  • Шваб К. Биомаркеры микотоксинов: за и против. Животноводство России, 2015, 1: 50-52.
  • Буркин А.А., Кононенко Г.П., Соболева Н.А. Охратоксин А: иммуноферментный анализ для оценки остаточных количеств в организме кур. Baltic Journal of Laboratory Animal Science, 2001, 11(4): 160-167.
  • Буркин А.А., Кононенко Г.П. Микотоксины как источник получения аналитических иммунореагентов. Успехи медицинской микологии, 2003, 1: 124-127.
  • Кононенко Г.П., Буркин А.А., Зотова Е.В., Соболева Н.А. Применение твердофазного конкурентного иммуноферментного анализа для определения фумонизинов группы В. Прикладная биохимия и микробиология, 1999, 35(2): 206-211.
  • Буркин А.А., Кононенко Г.П. Новая иммуноферментная тест-система для анализа фумонизинов (В1, В2, В3). Иммунопатология, аллергология, инфектология, 2010, 1: 187.
  • Буркин А.А., Кононенко Г.П., Соболева Н.А. Получение антител с групповой специфичностью к зеараленону, его метаболитам и синтетическим аналогам. Прикладная биохимия и микробиология, 2002, 38(2): 194-202.
  • ТР ТС 015/2011 Технический регламент Таможенного союза «О безопасности зерна» (с изменениями на 15 сентября 2017 года): утв. решением Комиссии Таможенного союза от 09.12.2011. № 874. Режим доступа: http://docs.cntd.ru/document/902320395. Без даты.
  • Tkaczyk A., Jedziniak P. Development of a multi-mycotoxin LC-MS/MS method for the determination of biomarkers in pig urine. Mycotoxin Research, 2021, 37(2): 169-181 (doi: 10.1007/s12550-021-00428-w).
  • Вертипрахов В.Г., Грозина А.А., Йылдырым Е.А., Гогина Н.Н., Кислова И.В., Овчинникова Н.В., Кощеева М.В. Эффективность комплексного препарата для коррекции пищеварения у цыплят-бройлеров (Gallus gallus L.) при экспериментальном микотоксикозе. Сельскохозяйственная биология, 2022, 57(4): 730-742 (doi: 10.15389/agrobiology.2022.4.730rus).
  • Йылдырым Е.А., Грозина А.А., Вертипрахов В.Г., Ильина Л.А., Филиппова В.А., Лаптев Г.Ю., Пономарева Е.С., Дубровин А.В., Калиткина К.А., Молотков В.В., Ахматчин Д.А., Бражник Е.А., Новикова Н.И., Тюрина Д.Г. Состав и метаболический потенциал микробиома кишечника бройлеров Gallus gallus L. под влиянием кормовых добавок при экспериментальном Т-2 токсикозе. Сельскохозяйственная биология, 2022, 57(4): 743-761 (doi: 10.15389/agrobiology.2022.4.743rus).
  • Charmley E., Trenholm H.L., Thompson B.K., Vudathala D., Nicholson J.W.G., Prelusky D.B., Charmley L.L. Influence of level of deoxynivalenol in the diet of dairy cows on feed intake, milk production, and its composition. Journal of Dairy Science, 1993, 76(11): 3580-3587 (doi: 10.3168/jds.S0022-0302(93)77697-3).
  • Sayyari A., Uhlig S., Fæste C.K., Framstad T., Sivertsen T. Transfer of deoxynivalenol (DON) through placenta, colostrum and milk sows to their offspring during late gestation and lactation. Toxins, 2018, 10(12): 517 (doi: 10.3390/toxins10120517).
  • Flores-Flores M.E., Lizarraga E., López de Cerain A., González-Peñas E. Presence of mycotoxins in animal milk: a review. Food Control, 2015, 53: 163-176 (doi: 10.1016/j.foodcont.2015.01.020).
  • Winkler J., Kersten S., Valenta H., Meyer U., Engelhardt U.H., Dänicke S. Development of a multi-toxin method for investigating the carryover of zearalenone, deoxynivalenol and their metabolites into milk of dairy cows. Food Additives & Contaminants: Part A, 2015, 32(3): 371-380.
  • Fink-Gremmels J. Mycotoxins in cattle feeds and carry-over to dairy milk: a review. Food Additives & Contaminants: Part A, 2008, 25(2): 172-180 (doi: 10.1080/02652030701823142).
  • Jurisic N., Schwartz-Zimmermann H.E., Kunz-Vekiru E., Reisinger N., Klein S., Caldwell D., Fruhmann P., Schatzmayr D., Berthiller F. Deoxynivalenol-3-sulphate is the major metabolite of dietary deoxynivalenol in eggs of laying hens. World Mycotoxin Journal, 2019, 12(3): 245-255 (doi: 10.3920/WMJ2018.2429).
  • Dänicke S., Ueberschär K.-H., Halle I., Matthes S., Valenta H., Flachowsky G. Effect of addition of a detoxing agent to laying hen diets containing uncontaminated or Fusarium toxin-contaminated maize on performance of hens and on carryover of zearalenone. Poultry Science, 2002, 81(11): 1671-1680 (doi: 10.1093/ps/81.11.1671).
  • Armorini S., Al-Qudah K.M., Altafini A., Zaghini A., Roncada P. Biliary ochratoxin A as a biomarker of ochratoxin exposure in laying hens: an experimental study after administration of contaminated diets. Research in Veterinary Science, 2015, 100: 265-270 (doi: 10.1016/j.rvsc.2015.03.004).
  • Гулюшин С.Ю., Кононенко Г.П., Буркин А.А. Распределение наибольшей потребляемой дозы охратоксина А в организме цыплят-бройлеров. Российский журнал Проблемы ветеринарной санитарии, гигиены и экологии, 2011, 1(5): 73-76.
  • Ueberschär K.-H., Brezina U., Dänicke S. Zearalenone (ZEN) and ZEN metabolites in feed, urine and bile of sows: analysis, determination of the metabolic profile and evaluation of the binding forms. Applied Agricultural and Forestry Research, 2016, 66(1): 21-28 (doi: 10.3220/LBF1462863902000).
  • Dänicke S., Brezina U. Kinetics and metabolism of the Fusarium toxin deoxynivalenol in farm animals: Consequences for diagnosis of exposure and intoxication and carry over. Food and Chemical Toxicology, 2013, 60: 58-75 (doi: 10.1016/j.fct.2013.07.017).
Еще
Статья обзорная