Piezoconductivity of chiral carbon nanotubes in the framework of the tight-binding method

Автор: Lebedeva Olga Sergeevna, Lebedev Nikolay Gennadyevich, Lyapkosova Irina Aleksandrovna

Журнал: Математическая физика и компьютерное моделирование @mpcm-jvolsu

Рубрика: Физика и астрономия

Статья в выпуске: 1 (44), 2018 года.

Бесплатный доступ

The results of a theoretical study of the piezoresistive properties of chiral carbon nanotubes with different types of conductivity are presented in this paper. An analytical expression for an electron spectrum of the chiral deformed carbon nanotubes has been obtained using the tight-binding method. External mechanical loads lead to band gap changes of the studied nanoparticles, which has an indirect influence on its conductivity. This change of conductivity due to a deformation is called piezoresistance effect, which is characterized by piezoresistive constants. In the framework of the Hubbard model and the Green function method, an analytic calculation of such constants, the longitudinal component of the elastoconductivity tensor, has been carried out. Its dependence on nanotubes’diameter, the magnitude of relative deformation of longitudinal compression and stretching are investigated.

Еще

Elasto-conductivity tensor, piezoresistance effect, compression and expansion deformation, band gap

Короткий адрес: https://sciup.org/14969062

IDR: 14969062   |   DOI: 10.15688/mpcm.jvolsu.2018.1.6

Список литературы Piezoconductivity of chiral carbon nanotubes in the framework of the tight-binding method

  • Bir G.L., Pikus G.E. Simmetriya i deformatsionnye effekty v poluprovodnikakh . Moscow, Nauka Publ., 1972. 584 p.
  • Chernozatonskiy L.A., Sorokin P.B., Artyukh A.A. Novye nanostruktury na osnove grafena: fizikokhimicheskie svoystva i prilozheniya . Uspekhi khimii , 2014, vol. 83, no. 3, pp. 251-279.
  • Dyachkov P.N. Uglerodnye nanotrubki: stroenie, svoystva, primeneniya . Moscow, BINOM; Laboratoriya znaniy Publ., 2006. 293 p.
  • Eletskiy A.V. Mekhanicheskie svoystva uglerodnykh nanostruktur i materialov na ikh osnove . Uspekhi fiziki , 2007, vol. 177, no. 3, pp. 233-274.
  • Izyumov Yu.A., Chashchin N.I., Alekseev D.S Teoriya silno korrelirovannykh sistem. Metod proizvodyashchego funktsionala . Moscow, Regulyarnaya i khaoticheskaya dinamika Publ., 2006. 384 p.
  • Khan Z.H., Kermany A.R., Цchsner A., Iacopi F. Mechanical and electromechanical properties of graphene and their potential application in MEMS. Journal of Physics D: Applied Physics, 2017, vol. 50, pp. 053003 (1-24).
  • Kvasnikov I.A. Termodinamika i statisticheskaya fizika. T. 4: Kvantovaya statistika . Moscow, KomKniga Publ., 2005. 352 p.
  • Lebedeva O.S., Lebedev N.G. Deformatsionnoe izmenenie zapreshchennoy shcheli primesnykh uglerodnykh nanotrubok . Khimicheskaya fizika , 2014, vol. 33, no. 10, pp. 73-80.
  • Lebedeva O.S., Lebedev N.G. Pyezorezistivnyy effekt v primesnykh odnosloynykh uglerodnykh nanotrubkakh v priblizhenii «Habbard-I» . Nauchno-tekhnicheskie vedomosti SPbGPU. Seriya «Fiziko-matematicheskie nauki» , 2014, vol. 195, no. 2, pp. 149-161.
  • Lebedeva O.S., Lebedev N.G. Vliyanie deformatsiy rastyazheniya i szhatiya na pyezorezistivnost uglerodnykh nanotrubok i grafenovykh nanolent . Nauchno-tekhnicheskie vedomosti SPbGPU. Seriya «Fiziko-matematicheskie nauki» , 2014, vol. 189, no. 1, pp. 26-34.
  • Li Y., Wang W., Liano K., Hu C. Piezoresistive effect in carbon nanotube films. Chinese Science Bulletin, 2003, vol. 48, no. 2, pp. 125-127.
  • Lyapkosova O.S., Lebedev N.G. Pyezorezistivnyy effekt v odnosloynykh uglerodnykh nanotrubkakh . Fizika tverdogo tela , 2012, vol. 54, no. 7, pp. 1412-1416.
  • Obitayo W. A, Liu T. Review: Carbon Nanotube -Based Piezoresistive Strain Sensors. Jornal of Sensors, 2012, vol. 2012, pp. 652438 (1-15).
  • Pereira V.M., Castro Neto A.H., Peres N.M.R. Tight-binding approach to uniaxial strain in graphene. Physical Review B., vol. 80, no. 7, pp. 045401(1-8).
  • Saito R., Dresselhaus M.S., Dresselhaus G. Physical properties of carbon nanotubes. London, Imperial College Press, 1999. 251 p.
  • Tyablikov S.V. Metody kvantovoy teorii magnetizma . Moscow, Nauka Publ., 1975. 528 p.
  • Vostrikov M.V. Sozdanie mikroelektromekhanicheskoy elementnoy bazy na baze tekhnologii MEMS . Naukoemkie tekhnologii. MGTU imeni N.E. Baumana , 2007, pp. 223-228.
Еще
Статья научная