Подход к локализации источника эпидемии COVID-19 в России на основе математического моделирования
Автор: Василий Юрьевич Осипов, Сергей Викторович Кулешов, Александра Алексеевна Зайцева, Алексей Юрьевич Аксенов
Журнал: Информатика и автоматизация (Труды СПИИРАН).
Рубрика: Математическое моделирование и прикладная математика
Статья в выпуске: Том 20 № 5, 2021 года.
Бесплатный доступ
В статье описаны результаты обработки статистических данных из открытых источников по развитию эпидемии COVID-19 и выполненного исследования по определению места и времени начала ее в России. В интересах предлагаемого исследования дан обзор существующих моделей процессов развития эпидемии и методов решения прямых и обратных задач его анализа. Предложена модель развития эпидемии COVID-19 в сети из девяти городов России: Москва, Санкт-Петербург, Нижний Новгород, Ростов-на-Дону, Краснодар, Екатеринбург, Новосибирск, Хабаровск, Владивосток. Города выбраны как по географическому положению, так и по количеству населения в них. Модель состоит из двадцати семи дифференциальных уравнений. Разработан алгоритм обратного анализа модели эпидемии. В качестве исходных данных для решения задачи выступали сведения по численности населения городов, интенсивности переходов процесса из одних состояний в другие, а также данные по инфицированности населения на заданные моменты времени. В статье также приводятся результаты детального анализа подходов решения к моделированию развития эпидемий по видам моделей (базовая модель SEIR, модель SIRD, адаптивная поведенческая модель, модифицированные SEIR-модели), и по странам (в Польше, во Франции, Испании, Греции и других), а также обзор прикладных задач, которые можно решить, используя моделирование распространения эпидемий. Рассматриваются дополнительные параметры среды, которые влияют на моделирование распространения эпидемий и могут учитываться для повышения точности результатов. По результатам моделирования установлены наиболее вероятные города-источники начала эпидемии в России, а также момент ее начала. Достоверность полученных оценок во многом определяется достоверностью использованных статистических данных по развитию COVID-19, находящихся в открытом доступе.
Математическое моделирование, Covid-19, решение обратной задачи анализа, прогнозирование, модели SEIR, моделирование распространения эпидемий
Короткий адрес: https://sciup.org/14127350
IDR: 14127350 | DOI: 10.15622/20.5.3