Ползучесть высокопрочного бетона при повышенных температурах

Автор: Баранов А.О., Страхов Д.А.

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 2 (107), 2023 года.

Бесплатный доступ

Объект исследования – высокопрочный бетон, содержащий микрокремнезем, золу-унос и суперпластификатор. Целью данной работы является получение экспериментальных данных по деформации ползучести высокопрочного бетона при повышенных температурах и разработка выражения для описания деформации ползучести (удельной деформации ползучести) высокопрочного бетона при повышенных температурах. Метод. Ползучесть высокопрочного бетона при повышенных температурах изучали на невысыхающих образцах. Образцы высокопрочного бетона в возрасте 90 суток нагревали со скоростью 10-15°С/час до температур 90 и 200°С, а затем нагружали постоянной нагрузкой, равной 30 % прочности на сжатие испытуемых образцов. определяется в возрасте 28 дней. Полученные результаты. Экспериментальные исследования подтвердили выводы других авторов о том, что деформация ползучести увеличивается с увеличением температуры нагрева. Деформация ползучести при температурах 90 и 200°С к концу рассматриваемого времени была в 3,6 и 4 раза выше деформации ползучести при нормальной температуре 20°С.

Еще

Высокопрочный бетон, температура, ползучесть, удельная деформация ползучести, зольная пыль, микрокремнезем

Короткий адрес: https://sciup.org/143180500

IDR: 143180500   |   DOI: 10.4123/CUBS.107.4

Список литературы Ползучесть высокопрочного бетона при повышенных температурах

  • Schneider, U., Felicetti, R., Debicki, G., Diederichs, U., Franssen, J.M., Jumppanen, U.M., Khoury, G.A., Leonovich, S., Millard, A., Morris, W.A., Phan, L.T., Pimienta, P., Rodrigues, J.P.C., Schlangen, E., Schwesinger, P. and Zaytsev, Y. (2007) Recommendation of RILEM TC 200-HTC: Mechanical Concrete Properties at High Temperatures-Modelling and Applications : PGeneral Presentation. Materials and Structures/Materiaux et Constructions, 40, 841–853. https://doi.org/10.1617/s11527-007-9285-2.
  • Alogla, S.M. and Kodur, V. (2020) Temperature-Induced Transient Creep Strain in Fiber-Reinforced Concrete. Cement and Concrete Composites, Elsevier Ltd, 113, 103719. https://doi.org/10.1016/j.cemconcomp.2020.103719.
  • Buttignol, T.E.T. and Bitencourt, L.A.G. (2021) A Transient Creep Investigation Applied to the Mesoscopic Analysis of Plain Concrete under Uniaxial Compression at High Temperature. Fire Safety Journal, Elsevier Ltd, 126, 103484. https://doi.org/10.1016/j.firesaf.2021.103484.
  • Yoon, M., Kim, G., Kim, Y., Lee, T., Choe, G., Hwang, E. and Nam, J. (2017) Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures. Materials, 10, 781. https://doi.org/10.3390/ma10070781.
  • Korsun, V., Vatin, N., Korsun, A. and Nemova, D. (2014) Physical-Mechanical Properties of the Modified Fine-Grained Concrete Subjected to Thermal Effects up to 200°С. Applied Mechanics and Materials, Trans Tech Publications Ltd, 1013–1017. https://doi.org/10.4028/www.scientific.net/AMM.633-634.1013.
  • Fan, K., Li, J., He, Z., Liu, Q. and Yao, Y. (2022) Transient Creep Strain of Fly Ash Concrete at Elevated Temperatures. https://doi.org/10.1680/jmacr.21.00267, Thomas Telford Ltd , 74, 1176–1187. https://doi.org/10.1680/JMACR.21.00267.
  • ASTM C618-22 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use. American Society for Testing and Materials, West Conshohocken, PA, USA: ASTM International, 5. https://doi.org/10.1520/C0618-22.
  • Milovanov, A.F. and Tupov, N.I. (1969) Polzuchest’ i Relaksaciya Napryazhenij v Betone Zrelogo Vozrasta Pri Dlitel’nom Dejstvii Povyshennyh Temperatur [Creep and Stress Relaxation in Mature Concrete under Prolonged Exposure to Elevated Temperatures]. Polzuchest' i Usadka Betona [Creep and Shrinkage of Concrete], 79-91. https://search.rsl.ru/ru/record/01007328607 (date of application: 26.01.2023).
  • Krichevsky, A.P. (1984) Raschet Zhelezobetonnyh Inzhenernyh Sooruzhenij Na Temperaturnye Vozdejstviya [Calculation of Reinforced Concrete Engineering Structures for Temperature Effects]. Stroyizdat., Moscow. https://search.rsl.ru/ru/record/01001213791 (date of application: 26.01.2023).
  • Korsun, V., Korsun, A. and Volkov, A. (2013) Characteristics of Mechanical and Rheological Properties of Concrete under Heating Conditions up to 200°C. MATEC Web of Conferences, EDP Sciences, 6. https://doi.org/10.1051/MATECCONF/20130607002.
  • Vidal, T., Sellier, A., Ladaoui, W. and Bourbon, X. (2013) Effect of Temperature on Basic Creep of High Performance Concretes Heated between 20°C and 80°C. Sustainable Construction Materials and Technologies, 2013-Augus. https://doi.org/10.1061/(asce)mt.1943-5533.0001063.
  • Ladaoui, W., Vidal, T., Sellier, A. and Bourbon, X. (2013) Analysis of Interactions between Damage and Basic Creep of HPC and HPFRC Heated between 20 and 80 °c. Materials and Structures/Materiaux et Constructions, 46, 13–23. https://doi.org/10.1617/s11527-012-9879-1.
  • Baranikumar, A., Torrence, C.E. and Grasley, Z. (2022) Thermorheological Approach to Predict Long-Term Creep of Cement Mortar from Short-Term Tests. Mechanics of Time-Dependent Materials, Springer Science and Business Media B.V., 26, 289–307. https://doi.org/10.1007/S11043-021-09488-Y/FIGURES/14.
  • Vasiliev, P.I. and Gavrilin, B.A. (1969) Vliyanie Temperatury Na Polzuchest' Stareyushchego Betona [The Effect of Temperature on the Creep of Aging Concrete]. Polzuchest' i Usadka Betona [Creep and Shrinkage of Concrete], 9–20. https://search.rsl.ru/ru/record/01007328607 (date of application: 26.01.2023).
  • Vorobeva, A., Strakhov, D. and Semenov, K. (2021) Calculation of Reinforced Concrete Elements Taking into Account Nonlinear Creep at Different Loading Mode. Lecture Notes in Civil Engineering, Springer Science and Business Media Deutschland GmbH, 150 LNCE, 73–84. https://doi.org/10.1007/978-3-030-72404-7_8/TABLES/5.
  • Torrenti, J.M. (2017) Basic Creep of Concrete-Coupling between High Stresses and Elevated Temperatures. European Journal of Environmental and Civil Engineering, Taylor & Francis, 22, 1419–1428. https://doi.org/10.1080/19648189.2017.1280417.
  • Guerrieri, M. and Fragomeni, S. (2015) Creep and Mechanical Properties of Concrete after Exposure to Elevated Temperatures. CONCREEP 10, American Society of Civil Engineers, Reston, VA, 1177–1186. https://doi.org/10.1061/9780784479346.140.
  • Volkov, A.S. (2021) The Influence of the Scale Factor and the Effect of Elevated Temperatures up to +200 °C on the Characteristics of the Physico-Mechanical and Rheological Properties of High-Strength Modified Concrete. Modern industrial and civil construction, 17, 63–76. https://elibrary.ru/fpeqdr.
  • International Technical Standard GOST 31108-2020 Common Cements. Specifications. Standartinform Publ., Russian Federation. https://docs.cntd.ru/document/1200174658.
  • International Technical Standard GOST 8736-2014 Sand for Construction Works. Specifications. Standartinform Publ., Russian Federation. https://docs.cntd.ru/document/1200114239.
  • International Technical Standard GOST 8267-93 Crushed Stone and Gravel of Solid Rocks for Construction Works. Specifications. Standartinform Publ., Russian Federation. https://docs.cntd.ru/document/1200000314.
  • International Technical Standard GOST 23732-2011 Water for Concrete and Mortars. Specifications. Standartinform Publ., Russian Federation. https://docs.cntd.ru/document/1200093835.
  • National Standard of the Russian Federation GOST 56178-2014 Modifiers of Organic-Mineral Origin of MB Type for Concretes, Mortars and Dry Mixes. Specifications. Standartinform Publ., Russian Federation. https://docs.cntd.ru/document/1200113793.
  • International Technical Standard GOST 10180-2012. Concretes. Methods for Strength Determination Using Reference Specimens. Standartinform Publ., Russian Federation. https://docs.cntd.ru/document/1200100908.
  • Baranov, A.O., Zorina, E.A. and Kirian, I.V. (2021) Mechanical Characteristics of High-Strength Concrete with Fly Ash and Silica Fume at Elevated Temperatures: The Influence of Heating Duration. Construction of Unique Buildings and Structures, 3, 9601. https://doi.org/10.4123/CUBS.96.1.
  • Korsun, V. and Baranov, A. (2021) Mechanical Properties of High-Strength Concrete After Heating at Temperatures up to 400 °C. Lecture Notes in Civil Engineering, Springer Science and Business Media Deutschland GmbH, 150 LNCE, 454–463. https://doi.org/10.1007/978-3-030-72404-7_44.
  • Korsun, V., Baranov, A., Khon, K. and Ha, Q. (2021) The Influence of Temperature and Duration of Heating on the Properties of High-Strength Concrete Modified by Organo-Mineral Components. Lecture Notes in Civil Engineering, Springer Science and Business Media Deutschland GmbH, 150 LNCE, 515–524. https://doi.org/10.1007/978-3-030-72404-7_50.
  • Milovanov, A.F. and Perederey, V.D. (1981) Polzuchest' Betona Pri Povyshennyh Temperaturah [Creep of Concrete at Elevated Temperatures]. Povedenie Betonov i Elementov Zhelezobetonnyh Konstrukcij Pri Nagreve [Behavior of Concretes and Elements of Reinforced Concrete Structures during Heating], 3–14. https://search.rsl.ru/ru/record/01001110559 (date of application: 26.01.2023).
  • Aleksandrovsky, S.V. (2004) Raschet Betonnyh i Zhelezobetonnyh Konstrukcij Na Izmeneniya Temperatury i Vlazhnosti s Uchetom Polzuchesti Betona [Calculation of Concrete and Reinforced Concrete Structures for Changes in Temperature and Humidity]. Research I., Moscow. https://search.rsl.ru/ru/record/01002502609 (date of application: 26.01.2023).
  • Aleksandrovsky, S.V. and Szusz, F. (1974) Zadacha Teorii Polzuchesti o Relaksacii Napryazhenij v Betonnyh Brus'yah Pri Neodnorodnoj Vynuzhdennoj Deformacii i Uchete Vliyaniya Temperatury Na Svojstva Betona [The Problem of Creep Theory on Stress Relaxation in Concrete Beams]. Problemy Polzuchesti i Usadki Betona. Vtoroe Vsesoyuznoe Soveshchaniya , Erevan,1974 [Problems of Creep and Shrinkage of Concrete. Second All-Union Conference Yerevan, 1974]., 186–195. https://search.rsl.ru/ru/record/01007335988 (date of application: 26.01.2023).
Еще
Статья научная