Population models with projection matrix with some negative entries - a solution to the Natchez paradox

Бесплатный доступ

In this note we consider the population the model of which, derived on the basis of ethnographical accounts, includes a projection matrix with both positive and negative entries. Interpreting the eventually negative trajectories as representing the collapse of the population, we use some classical tools from convex analysis to determine a cone containing the initial conditions that give rise to the persistence of both the population and its social structure.

Population theory, natchez civilisation, convex cone, perron-frobenius theory, viability cone

Короткий адрес: https://sciup.org/147232896

IDR: 147232896   |   DOI: 10.14529/mmp180302

Список литературы Population models with projection matrix with some negative entries - a solution to the Natchez paradox

  • Cushing J.M. An Introduction to Structured Population Dynamics. Philadelphia, SIAM, 1998.
  • Luenberger D.G. Introduction to Dynamic Systems: Theory, Models, and Applications. N.Y., Wiley, 1979.
  • Noutsos D. On Perron-Frobenius Property of Matrices Having Some Negative Entries. Linear Algebra and its Applications, 2006, vol. 412, no. 2, pp. 132-153.
  • Schneider H., Vidyasagar M. Cross-Positive Matrices. SIAM Journal on Numerical Analysis, 1970, vol. 7, no. 4, pp. 508-519.
  • Swanton J.R. Indian Tribes of the Lower Mississippi Valley and Adjacent Coast of the Gulf of Mexico. N.Y., Dover Publications, 2013.
  • Hart C.A Reconstruction of the Natchez Social Structure. American Anthropologist, 1943, vol. 45, pp. 374-386.
  • Fischer J.L. Solutions for the Natchez Paradox. Ethnology, 1964, vol. 3, no. 1, pp. 53-65.
  • White D.R., Murdock G.P., Scaglion R. Natchez Class and Rank Reconsidered. Ethnology, 1971, vol. 10, no. 4, pp. 369-388.
  • Gritzmann P., Klee V., Tam. B.-S. Cross-Positive Matrices Revisited. Linear Algebra and Its Applications, 1995, vol. 223, pp. 285-305.
  • Fenchel W., Blackett D.W. Convex Сones, Sets, and Functions. Princeton University, Department of Mathematics, Logistics Research Project, 1953.
  • Rockafellar R.T. Convex Analysis. Princeton, Princeton University Press, 2015.
Еще
Статья научная