Order properties of homogeneous orthogonally additive polynomials

Автор: Kusraeva Zalina A.

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 3 т.23, 2021 года.

Бесплатный доступ

This is a survey of author's results on the structure of orthogonally additive homogeneous polynomials in vector, Banach and quasi-Banach lattices. The research method is based on the linearization by means of the power of a vector lattice and the canonical polynomial, presented in Section 1. Next, in Section 2, some immediate applications are given: criterion for kernel representability, existence of a simultaneous extension and multiplicative representation from a majorizing sublattice, a characterization of extreme extensions. Section 3 provides a complete description and multiplicative representation for homogeneous disjointness preserving polynomials. Section 4 is devoted to the problem of compact and weakly compact domination for homogeneous polynomials in Banach lattices. Section 5 deals with convexity and concavity of homogeneous polynomials between quasi-Banach lattices, while Section 6 handle the condition under which the quasi-Banach lattice of orthogonally additive homogeneous polynomials is (p,q)-convex, or (p,q)-concave, or geometrically convex. Section 7 provides a characterization and analytic description of polynomials representable as a finite sum of disjointness preserving polynomials. Finally, some challenging open problems are listed in Section 8.

Еще

Vector lattice, quasi-banach lattice, the power of a vector lattice, polymorphism, linearization, factorization, domination problem, integral representations

Короткий адрес: https://sciup.org/143178031

IDR: 143178031   |   DOI: 10.46698/l0779-9998-4272-b

Статья научная