Possibilistic Fuzzy Clustering for Categorical Data Arrays Based on Frequency Prototypes and Dissimilarity Measures

Автор: Zhengbing Hu, Yevgeniy V. Bodyanskiy, Oleksii K. Tyshchenko, Viktoriia O. Samitova

Журнал: International Journal of Intelligent Systems and Applications(IJISA) @ijisa

Статья в выпуске: 5 vol.9, 2017 года.

Бесплатный доступ

Fuzzy clustering procedures for categorical data are proposed in the paper. Most of well-known conventional clustering methods face certain difficulties while processing this sort of data because a notion of similarity is missing in these data. A detailed description of a possibilistic fuzzy clustering method based on frequency-based cluster prototypes and dissimilarity measures for categorical data is given.

Computational Intelligence, Machine Learning, Categorical Data, Categorical Scale, Possibilistic Fuzzy Clustering, Frequency Prototype, Dissimilarity Measure

Короткий адрес: https://sciup.org/15010932

IDR: 15010932

Список литературы Possibilistic Fuzzy Clustering for Categorical Data Arrays Based on Frequency Prototypes and Dissimilarity Measures

  • A.K. Jain and R.C. Dubes, Algorithms for Clustering Data. Englewood Cliffs, N.J.: Prentice Hall, 1988.
  • L. Kaufman and P.J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis. N.Y.: John Wiley & Sons, Inc., 1990.
  • J. Han and M. Kamber, Data Mining: Concepts and Techniques. San Francisco: Morgan Kaufmann, 2006.
  • G. Gan, C. Ma, and J. Wu. Data Clustering: Theory, Algorithms, and Applications. Philadelphia: SIAM, 2007.
  • J. Abonyi and B. Feil, Cluster Analysis for Data Mining and System Identification. Basel: Birkhäuser, 2007.
  • D.L. Olson and D. Dursun, Advanced Data Mining Techniques. Berlin: Springer, 2008.
  • C.C. Aggarwal and C.K. Reddy, Data Clustering: Algorithms and Applications. Boca Raton: CRC Press, 2014.
  • K.-L. Du and M.N.S. Swamy, Neural Networks and Statistical Learning. London: Springer- Verlag, 2014.
  • T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. Data Mining, Inference, and Prediction. N.Y.: Springer Science & Business Media, LLC, 2009.
  • C.C. Aggarwal, Data Mining. Cham: Springer, Int. Publ. Switzerland, 2015.
  • J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms. N.Y.: Plenum Press, 1981.
  • F. Hoeppner, F. Klawonn, R. Kruse, T. Runkler, Fuzzy Clustering Analysis: Methods for Classification, Data Analysis and Image Recognition. Chichester: John Wiley & Sons, 1999.
  • J.C. Bezdek, J. Keller, R. Krisnapuram, and N. Pal, Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. N.Y.: Springer Science and Business Media, Inc., 2005.
  • Zh. Hu, Ye.V. Bodyanskiy, O.K. Tyshchenko, O.O. Boiko,"An Ensemble of Adaptive Neuro-Fuzzy Kohonen Networks for Online Data Stream Fuzzy Clustering", International Journal of Modern Education and Computer Science (IJMECS), Vol.8, No.5, pp.12-18, 2016.
  • Zh. Hu, Ye.V. Bodyanskiy, O.K. Tyshchenko, and O.O. Boiko, “An Evolving Cascade System Based on a Set of Neo-Fuzzy Nodes”, International Journal of Intelligent Systems and Applications (IJISA), Vol. 8(9), pp.1-7, 2016.
  • Ye. Bodyanskiy, O. Tyshchenko, and D. Kopaliani, “A hybrid cascade neural network with an optimized pool in each cascade”, Soft Computing, Vol.19, No.12, pp.3445-3454, 2015.
  • Ye. Bodyanskiy, O. Tyshchenko, and D. Kopaliani, “An Evolving Cascade Neuro-Fuzzy System for Data Stream Fuzzy Clustering”, in International Journal of Computer Science and Mobile Computing (IJCSMC), 2015, vol. 4(9), pp.270-275.
  • Ye. Bodyanskiy, O. Tyshchenko, and D. Kopaliani, “Adaptive learning of an evolving cascade neo-fuzzy system in data stream mining tasks”, Evolving Systems, Vol.7, No.2, pp.107-116, 2016.
  • Ye. Bodyanskiy, O. Tyshchenko, and A. Deineko, “An Evolving Radial Basis Neural Network with Adaptive Learning of Its Parameters and Architecture”, Automatic Control and Computer Sciences, Vol. 49, No. 5, pp. 255-260, 2015.
  • Ye. Bodyanskiy, O. Tyshchenko, and D. Kopaliani, “An evolving neuro-fuzzy system for online fuzzy clustering”, Proc. Xth Int. Scientific and Technical Conf. “Computer Sciences and Information Technologies (CSIT’2015)”, pp.158-161, 2015.
  • R. Xu and D.C. Wunsch, Clustering. Hoboken, NJ: John Wiley & Sons, Inc. 2009.
  • Zh. Hu, Ye.V. Bodyanskiy, and O.K. Tyshchenko, “A Cascade Deep Neuro-Fuzzy System for High-Dimensional Online Possibilistic Fuzzy Clustering”, Proc. of the XI-th International Scientific and Technical Conference “Computer Science and Information Technologies” (CSIT 2016), 2016, Lviv, Ukraine, pp.119-122.
  • Zh. Hu, Ye.V. Bodyanskiy, and O.K. Tyshchenko, “A Deep Cascade Neuro-Fuzzy System for High-Dimensional Online Fuzzy Clustering”, Proc. of the 2016 IEEE First Int. Conf. on Data Stream Mining & Processing (DSMP), 2016, Lviv, Ukraine, pp.318-322.
  • Zh. Hu, Ye.V. Bodyanskiy, O.K. Tyshchenko, V.O. Samitova,"Fuzzy Clustering Data Given in the Ordinal Scale", International Journal of Intelligent Systems and Applications (IJISA), Vol.9, No.1, pp.67-74, 2017.
  • Zh. Hu, Ye.V. Bodyanskiy, O.K. Tyshchenko, V.O.
  • Samitova, "Fuzzy clustering data given on the ordinal scale based on membership and likelihood functions sharing", International Journal of Intelligent Systems and Applications (IJISA), Vol.9, No.2, pp.1-9, 2017.
  • Zh. Huang, “Extensions to the k-means algorithm for clustering large data sets with categorical values”, in Data Mining and Knowledge Discovery, 1998, vol. 2(2), pp.283-304.
  • Z. He, S. Deng, and X. Xu, “Improving k-modes algorithm considering frequencies of attribute values in mode”, in Lecture Notes in Computer Science. Computational Intelligence and Security, 2005, vol. 3801, pp.157-162.
  • M. Lei, P. He, and Zh. Li, “An improved k-means algorithm for clustering categorical data”, in Journal of Communications and Computer, 2006, vol. 3(8), pp.20-24.
  • J.-P. Mei and L. Chen, “Fuzzy relational clustering around medoids: A unified view”, in Fuzzy Sets and Systems, 2011, vol. 183(1), pp.44-56.
  • H.-J. Xing and M.-H. Ha, “Further improvements in Feature-Weighted Fuzzy C-Means”, in Information Sciences, 2014, vol. 267, pp.1-15.
  • L. Svetlova, B. Mirkin, H. Lei, “MFWK-Means: Minkowski metric Fuzzy Weighted K-Means for high dimensional data clustering”, IEEE 14th International Conference on Information Reuse and Integration (IRI), 2013.
  • G. Sudipto, R. Rajeev, and S. Kyuseok, “ROCK: A Robust Clustering Algorithm for Categorical Attributes”, Proc. of the IEEE Int. Conf. on Data Engineering, Sydney, 1999, pp.512-521.
  • P. Jaccard, “Distribution de la flore alpine dans le Bassin des Dranses et dans quelques regions voisines”, in Bull. Soc. Vaudoise sci. Natur., 1901, vol. 37(140), pp. 241-272.
  • Zh. Huang and M.K. Ng, “A fuzzy k-modes algorithm for clustering categorical data”, IEEE Trans. on Fuzzy Systems, 1999, vol. 7(4), pp.446-452.
  • D.W. Kim, K.H. Lee, and D. Lee, “Fuzzy clustering of categorical data using fuzzy centroids”, in Pattern Recognition Letters, 2004, vol. 25, pp.1263-1271.
  • M. Lee, “Fuzzy p-mode prototypes: A generalization of frequency-based cluster prototypes for clustering categorical objects”, in Computational Intelligence and Data Mining, 2009, pp.320-323.
  • Ye. Bodyanskiy, V. Kolodyazhniy, and A. Stephan, “Recursive fuzzy clustering algorithms”, Proc. 10th East–West Fuzzy Colloquium, 2002, pp.276-283.
  • Ye. Bodyanskiy, “Computational intelligence techniques for data analysis”, in Lecture Notes in Informatics, 2005, P-72, pp.15–36.
  • R. Krishnapuram and J. Keller, “A possibilistic approach to clustering”, in IEEE Trans. on Fuzzy Systems, 1993, vol.2(1), pp.98-110.
Еще
Статья научная