Potentials allowing integration of the perturbed two-body problem in regular coordinates

Автор: Poleshchikov S.M.

Журнал: Известия Коми научного центра УрО РАН @izvestia-komisc

Статья в выпуске: 6 (52), 2021 года.

Бесплатный доступ

The problem of separation of variables in some coordinate systems obtained with the use of L-transformations is studied. Potentials are shown that allowseparation of regular variables in a perturbed two-body problem. The potential contains two arbitrarysmooth functions. An example of a potential is considered allowing explicit solution of the problem interms of elliptic functions. The cases of boundedand unbounded motion are shown. The results ofnumerical experiments are given.

Perturbed two-body problem, l-matrices, integrability, elliptic functions

Короткий адрес: https://sciup.org/149139331

IDR: 149139331   |   DOI: 10.19110/1994-5655-2021-6-20-35

Список литературы Potentials allowing integration of the perturbed two-body problem in regular coordinates

  • Aksenov E.P. Teorija dvizhenija iskusstvennyh sputnikov zemli [Theory of the motion of the Earth's artificial satellites]. Moscow: Nauka, 1977. 360 p. Аксенов Е.П. Теория движения искусственных спутников земли. М.: Наука, 1977. 360 с.
  • Ferrandiz J.M., Floria L. Towards a systematic definition of intermediaries in the theory of artificial satellites // Bull. Astron. Inst. Czechosl. 1991. Vol. 42. P. 401 - 407.
  • Beletsky V.V. Traektorii kosmicheskih poletov s postojannym vektorom reaktivnogo uskorenija [Trajectories of Space Flights with a Constant Vector of Reactive Acceleration] // Cosmic Research. 1964. Vol. 2, No. 3. P. 787 - 807. Белецкий В.В. О траекториях космических полетов с постоянным вектором реактивного ускорения // Космические исследования. 1964. Т. 2, № 3. С. 787 - 807.
  • Kunitsyn A.L. O dvizhenii rakety v central'nom silovom pole s postojannym vektorom reak-tivnogo uskorenija [Rocket Motion in a Central Force Field with a Constant Vector of Reactive Acceleration] // Cosmic Research. 1966. Vol. 4, No. 2. P. 324 - 332. Куницын А.Л. О движении ракеты в центральном силовом поле с постоянным вектором реактивного ускорения // Космические исследования. 1966. Т, 4. № 2. С. 324 - 332.
  • Demin V.G. Dvizhenie iskusstvennogo sputnika v necentral'nom pole tjagotenija [The motion of an artificial satellite in the eccentric gravitational field]. Moscow: Nauka, 1968. 352 p. Демин В.Г. Движение искусственного спутника в нецентральном поле тяготения. М.: Наука, 1968. 352 с.
  • Kirchgraber U. A problem of orbital dynamics, which is separable in ^S-variables // Celest. Mech. 1971. Vol. 4. P. 340 - 347.
  • Poleshchikov S.M. One integrable case of the perturbed two-body problem // Cosmic Res. Vol. 42, No. 4. P. 398 - 407.
  • Poleshchikov S.M., Kholopov AA Teorija L-matric i reguljarizacija uravnenij dvizhenija v nebesnoj mehanike [Theory of L-matrices and regularization of motion equations in Celestial Mechanics]. Syktyvkar: Syktyvkar Forest Inst., 1999. 255 p. Полещиков С.М., Холопов AA Теория L-мат-риц и регуляризация уравнений движения в небесной механике. Сыктывкар: СЛИ, 1999. 255 с.
  • Poleshchikov S.M. Regularization of motion equations with L-transformation and numerical integration of the regular equations // Celest. Mech. and Dyn. Astr. 2003. Vol. 85, No. 4. P. 341 - 393.
  • Pars LA. A treatise on analytical dynamics. NY: Wiley, 1965. 636 p.
  • Kholshevnikov K.V. Ob integriruemosti v nebesnoj mehanike [On the integrability in celestial mechanics] // Analiticheskaja nebesnaja mehanika [Analytical celestial mechanics]. Kazan: Kazan University publ., 1990. P. 5 - 10. Холшевников К.В. Об интегрируемости в небесной механике // Аналитическая небесная механика. Казань: Изд-во Казан. ун-та, 1990. С. 5 - 10.
  • Stiefel E., Scheifele G. Linear and regular celestial mechanics. Berlin: Springer-Verlag, 1971. 304 p.
  • Poleshchikov S.M. Regularization of canonical equations of the two-body problem using a generalized ^S-matrix // Cosmic Res. 1999. Vol. 37, No. 3. P. 302 - 308.
  • Poleshchikov S.M. Motion of a particle in a perturbed field of the attracting centre // Cosmic Res. 2007. Vol. 45, No. 6. P. 522 - 535.
  • Byrd P.F., Friedman M.D. Handbook of elliptic integrals for engineers and physicists. Berlin: Springer-Verlag, 1954. 355 p.
  • Poleshchikov S.M., Zhubr A.V. A set of potentials allowing integration of the perturbed two-body problem in regular coordinates // Cosmic Res. 2008. Vol. 46, No. 3. P. 202 - 214.
  • Poleshchikov S.M. Integriruemyj sluchaj voz-mushhennoj zadachi dvuh tel, porozhdajushhej elementarnye funkcii [An integrable case of the perturbed two-body problem producing elementary functions] // Proc. of Syktyvkar Forest Inst. 2006. Vol. 6. P. 31 - 57. Полещиков С.М. Интегрируемый случай возмущенной задачи двух тел, порождающей элементарные функции // Труды СЛИ. 2006. Т. 6. С. 31 - 57.
Еще
Статья научная