Поточечные оценки и критерий существования решений сублинейных эллиптических уравнений

Автор: Вербицкий Игорь Е.

Журнал: Математическая физика и компьютерное моделирование @mpcm-jvolsu

Рубрика: Математика

Статья в выпуске: 3 (40), 2017 года.

Бесплатный доступ

В работе представлен обзор последних результатов о положительных решениях эллиптических уравнений типа -𝐿𝑢 + 𝑢𝑞 = 𝑓, где - эллиптический оператор в дивергентной форме, 0

Сублинейные эллиптические уравнения, функция грина, слабый принцип максимума, дробный лапласиан

Короткий адрес: https://sciup.org/14968905

IDR: 14968905   |   DOI: 10.15688/mpcm.jvolsu.2017.3.2

Список литературы Поточечные оценки и критерий существования решений сублинейных эллиптических уравнений

  • Adams D.R., Hedberg L.I. Function Spaces and Potential Theory. Berlin; Heidelberg; New York, Springer-Verlag, 1996. 368 p.
  • Ancona A. Some results and examples about the behaviour of harmonic functions and Green’s functions with respect to second order elliptic operators. Nagoya Math. J., 2002, vol. 165, pp. 123-158.
  • Berge C., Ghouila-Houri A. Programming, Games and Transportation Networks. London, Methuen, 1965. 248 p.
  • Boccardo L., Orsina L. Sublinear elliptic equations in �s. Houston Math. J., 1994, vol. 20, pp. 99-114.
  • Boccardo L., Orsina L. Sublinear elliptic equations with singular potentials. Adv. Nonlin. Studies, 2012, vol. 12, pp. 187-198.
  • Brezis H., Kamin S. Sublinear elliptic equation on Rn. Manuscr. Math., 1992, vol. 74, pp. 87-106.
  • Cascante C., Ortega J.M., Verbitsky I.E. On �p -�q trace inequalities. J. London Math. Soc., (2006), vol. 74, pp. 497-511.
  • Cao D.T., Verbitsky I.E. Nonlinear elliptic equations and intrinsic potentials of Wolff type. J. Funct. Analysis, 2017, vol. 272, pp. 112-165 DOI: 10.1016/j.jfa.2016.10.010
  • Cao D.T., Verbitsky I.E. Pointwise estimates of Brezis-Kamin type for solutions of sublinear elliptic equations. Nonlin. Analysis Ser. A: Theory, Methods & Appl., 2016, vol. 146, pp. 1-19.
  • Dat C.T., Verbitsky I.E. Finite energy solutions of quasilinear elliptic equations with sub-natural growth terms. Calc. Var. PDE, 2015, vol. 52, pp. 529-546.
  • Frazier M., Nazarov F., Verbitsky I. Global estimates for kernels of Neumann series and Green’s functions. J. London Math. Soc., 2014, vol. 90, pp. 903-918.
  • Fuglede B. On the theory of potentials in locally compact spaces. Acta Math., 1960, vol. 103, pp. 139-215.
  • Grigor’yan A. Heat Kernel and Analysis on Manifolds. Boston, AMS, 2009. 482 p.
  • Grigor’yan A. Heat kernels on weighted manifolds and applications. Contemp. Math., 2006, vol. 398, pp. 93-191.
  • Grigor’yan A., Hansen W. Lower estimates for a perturbed Green function. J. Anal. Math., 2008, vol. 104, pp. 25-58.
  • Grigor’yan A., Verbitsky I.E. Pointwise estimates of solutions to nonlinear equations for nonlocal operators, preprint, 2017.
  • Grigor’yan A., Verbitsky I.E. Pointwise estimates of solutions to semilinear elliptic equations and inequalities. J. d’Analyse Math. (to appear). URL: https://arxiv.org/abs/1511.03188.
  • Hansen W. Uniform boundary Harnack principle and generalized triangle property. J. Funct. Analysis, 2005, vol. 226, pp. 452-484.
  • Hansen W., Netuka I. On the Picard principle for Δ + µ. Math. Z., 2012, vol. 270, pp. 783-807.
  • Marcus M., Ve´ron L. Nonlinear Second Order Elliptic Equations Involving Measures. Berlin; Boston, Walter de Gruyter, 2014. 248 p.
  • Maurey B. The´ore` mes de factorisation pour les ope´rateurs line´aires a` les espaces �p. Paris, Soc. Math. France, 1974. 384 p. valeurs dans
  • Maz’ya V. Sobolev Spaces, with Applications to Elliptic Partial Differential Equations. Berlin, Springer, 2011. 866 p.
  • Quinn S., Verbitsky I.E. A sublinear version of Schur’s lemma and elliptic PDE, preprint. URL: https://arxiv.org/abs/1702.02682.
  • Quinn S., Verbitsky I.E. Solutions to sublinear elliptic equations in � 1,p (Ω) and �r (Ω) spaces, preprint, 2017.
  • Quinn S., Verbitsky I.E. Weighted norm inequalities of (1, q)-type for integral and fractional maximal operators. Harmonic Analysis, Partial Differential Equations and Applications, in Honor of Richard L. Wheeden, Ser. Applied and Numerical Harmonic Analysis. Basel, Birkha¨ user, 2017, pp. 217-238.
  • Stein E., Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. Princeton, N.J., Princeton Univ. Press, 1971. 297 p.
  • Verbitsky I.E. Sublinear equations and Schur’s test for integral operators, 50 Years with Hardy Spaces, a Tribute to Victor Havin, Ser. Operator Theory: Adv. Appl., vol. 261, Basel, Birkha¨ user, 2017 (to appear).
Еще
Статья научная