Преобразователь перемещения для контроля состояния пневмо-гидравлической системы ракет-носителей
Автор: Мадриченко Вениамин Геннадьевич, Макарьянц Михаил Викторович, Тингаев Владимир Сергеевич, Ливочкина Наталья Александровна, Акбаров Руслан Рустамович, Масленников Андрей Михайлович
Журнал: Известия Самарского научного центра Российской академии наук @izvestiya-ssc
Рубрика: Авиационно-космическое машиностроение
Статья в выпуске: 1-2 т.14, 2012 года.
Бесплатный доступ
В работе описаны проблемы создания преобразователей перемещения для работы в криогенных условиях эксплуатации. Описаны преимущества волоконно-оптических преобразователей для решения поставленной задачи. Для построения преобразователя предложены несколько конструкций чувствительного элемента, для реализации вторичного преобразователя предложено использовать волоконную интерферометрическую схему с обратным отражением. Результатом работы являются позиционные характеристики преобразователей перемещения.
Преобразователь перемещения, пневмо-гидравлическая система, поляризация, эффект фарадея
Короткий адрес: https://sciup.org/148200631
IDR: 148200631
Текст научной статьи Преобразователь перемещения для контроля состояния пневмо-гидравлической системы ракет-носителей
Создание перспективных образцов ракетно-космической и авиационной техники требует решения целого комплекса научно-технических проблем, в том числе разработки высокопроизводительных, энергоэффективных, малогабаритных и надежных датчиков для решения задач контроля, измерения и управления. С точки зрения устойчивости к дестабилизирующим факторам, габаритов, энергопотребления и эксплуатационной надежности наиболее перспективными для создания систем контроля являются оптические и волоконно-оптических датчики. Созданию волоконно-оптических датчиков для задач космической промышленности препятствует ряд нерешенных задач в области оптической физики, связанных с проведением комплексных теоретических и экспериментальных исследований механизмов взаимосвязи оптических, физикохимических процессов в материалах и элементах оптики. Это обстоятельство определяет актуальность работ по созданию нового поколения отечественных оптических и оптоэлектронных преобразователей физических величин и формированию на их основе бортовых систем контроля.
В настоящее время в бортовых системах применяются измерительные преобразователи (датчики) с выходным электрическим сигналом в цифровой и аналоговой форме. Погрешность
Мадриченко Вениамин Геннадьевич, аспирант.
Макарьянц Михаил Викторович, заместитель главного конструктора – начальника отделения
Тингаев Владимир Сергеевич, аспирант. Е-mail:
пневмо-гидравлическая система, поляризация, эф- различных типов датчиков составляет от 0,01 до 1-3%, масса датчика – от 0,1 до 1500 г, при этом масса электрических кабелей, соединяющих датчики и исполнительные органы с системой управления, составляет значительную долю от общей массы всего аппарата. Определение положения физических объектов и их перемещений является важной функцией многих автоматизированных систем. Под перемещением объектов подразумевается их передвижение из одного положения в другое. Для измерения перемещений используются различные методы, на основе которых реализуют следующие датчики перемещений: резистивные, емкостные, индуктивные, оптические, ультразвуковые. Каждому типу датчиков присущи свои достоинства и недостатки, которые необходимо учитывать в решении конкретной задачи.
В настоящее время существует задача измерения перемещения объектов находящихся в условиях низких температур, например клапанов, пневмо-гидравлической системы ракетного двигателя в системах подачи кислорода. Решение данной задачи осложняется рядом условий:
-
- диапазон изменения температуры от минус 253 С до плюс 150 С;
-
- высокий уровень вибраций;
-
- высокий уровень электромагнитного излучения;
-
- агрессивная среда.
После проведения сравнительного анализа и классификации методов измерения перемещения, выявлено, что для решения задачи измерения перемещения в условиях низких температур наиболее применимы волоконно-оптические датчики с волокном в качестве чувствительного элемента, как обеспечивающие наиболее высокую чувствительность измерения, высокое быстродействие, помехозащищенность от электромагнитных и радиационных помех, устойчивость к агрессивным и горючим средам, а также взрыво-пожаробезо-пасность. Проведенные анализ и обзор существующих оптических преобразователей перемещения указывают на невозможность применения готовых решений в области оптических датчиков для решения поставленной задачи, поэтому предложен совершенно новый способ измерения перемещения подвижных объектов на основе эффекта Фарадея. Датчики, реализованные на данном эффекте, можно отнести к поляризацонным. Построение данного преобразователя сводится к созданию в замкнутом объеме магнитного поля, которое изменяется при перемещении ферромагнитного плунжера, связанного с клапаном. Изменение перемещения регистрируется в специальной катушке с намотанным оптическим волокном. Угол поляризации излучения на выходе из данного устройства будет нести информацию о магнитном поле и, следовательно, о перемещении плунжера. Эффект Фарадея или эффект кругового магнитного двулучепреломления -один из эффектов магнитооптики, заключающийся в повороте плоскости поляризации линейно поляризованной электромагнитной волны при ее прохождении через продольно намагниченную среду. Вследствие этого волны, поляризованные по правому и левому кругу, распространяются в веществе с разными фазовыми скоростями и при прохождении ими в веществе некоторого расстояния l между ними появляется разность фаз. Кроме того, плоскость поляризации результирующей поляризованной волны поворачивается на угол:

где V v - постоянная Верде; L - длина оптического волокна, на которое воздействует поле; H - напряженность магнитного поля.
Изменение угла поворота плоскости поляризации зависит от изменения магнитного поля, под действием движения плунжера (рис. 1). Для его регистрации использована волоконная интерферометрическая схема с обратным отражением [1].
Устройство работает следующим образом, магнитный элемент, связанный с объектом измерения, вызывает изменение магнитного поля. Магнитное поле пронизывает волоконно-оптическую катушку из магнитооптического материала, причем один конец волоконно-оптической катушки из магнитооптического материала подключен через оптическое волокно к широкополосному источнику света вторичного оптоэлектронного блока, а на второй конец (торец) волоконно-оптической катушки из магнитооптического материала нанесено зеркало, выполненное, например, в виде слоя металлизации или отражающей решетки Брега, а вторичный оптоэлектронный блок основан на интерферометрическом методе измерения по схеме с обратным отражением и регистрирует величину угла поворота плоскости поляризации света в волоконно-оптической катушке.

Рис. 1. Структурная схема оптического преобразователя:
1 - источник света, 2 - ответвитель, 3 - фотодетектор, 4 -поляризатор, 5а и 5б - точки сварки волокна, 6 - модулятор, 7 - волоконная линия, 8 - четверть волновая пластинка, 9 - катушка с оптическим волокном 11,10 - зеркало
Оптическое излучение последовательно проходит через направленный ответвитель, волоконный поляризатор, где свет преобразуется в линейно поляризованный. Далее свет на стыке с дву-лучепреломляющим волокном разделяется на две, равные по интенсивности волны, направляемые по быстрой и медленной оптическим осям этого волокна и поступает в волоконный модулятор двулучепреломления. Далее излучение проходит через соединительную линию, фазовую четверть волновую пластинку, здесь одна из волн преобразуется в правоциркулярную, другая в левоциркулярную. Сформированные фазовой пластинкой ортогональные циркулярно поляризованные моды распространяются в чувствительном элементе датчика по чувствительному волокну, сохраняющему циркулярную поляризацию, и под действием магнитного поля между ними накапливается фазовый сдвиг, пропорциональный напряженности магнитного поля.
После отражения от зеркала моды, сменив направление циркулярной поляризации на противоположное, распространяются в обратном направлении. При повторном проходе фазовой пластинки циркулярно поляризованные моды вновь преобразуются в линейные. В результате на входе в поляризатор все фазовые сдвиги, обусловленные взаимными эффектами (влияние показателя преломления среды, ДЛП в световоде), компенсируются и сохраняется только связанный с измеряемым полем фазовый сдвиг. Составляющие обеих линейно поляризованных мод проходят через поляризатор и интерферируют, затем интерференционный сигнал через ответвитель поступает на фотоприемник. На выходе фазового детектора напряжение пропорционально фазовому сдвигу, обусловленному эффектом Фарадея. Далее сигнал оцифровывается в микроконтроллере.
Преимуществом этой схемы по сравнению с другими схемами построения устройства является то, что две интерферирующие волны все время находятся относительно близко в пространстве. Поэтому температурные изменения окружающей среды и связанные с ними фазовые сдвиги световых волн происходят с волнами практически одновременно, т.е. волны получают одинаковые паразитные фазовые сдвиги. По этим же причинам существенно уменьшается чувствительность устройства к вибрациям. Все это сильно улучшает эксплуатационные характеристики устройства.
В ходе проведения исследований предложено несколько конструкций волоконно-оптических преобразователей перемещения. Первый вариант представляет собой магнитную систему из подвижного магнитного элемента, стационарного магнита и одной волоконной катушки. Второй вариант представляет собой систему из подвижного маг-

Рис. 2 : 1 – позиционная характеристика для модели с магнитом в качестве магнитного поля, 2 – позиционная характеристика для модели с катушками подмагничивания
Вывод: данный вид преобразователя является перспективным вариантом решения поставленной задачи, однако для практической реализации необходимы проведение дополнительных исследований влияния криогенных температур на характеристики волоконно-оптического тракта и разработка уточненных математических моделей датчика.
катушек. Принцип работы второго варианта устройства идентичен с первым устройством, но использование двух волоконно-оптических катушек позволяет во вторичном оптоэлектронном блоке добиться высокой устойчивости к синфазным дестабилизирующим факторам, таким как вибрации и температура. Предложенные варианты конструкций были промоделированы с учетом реальных материалов и построены позиционные характери-
Список литературы Преобразователь перемещения для контроля состояния пневмо-гидравлической системы ракет-носителей
- Shayne, X. Short Elimination of Birefringence Induced Scale Factor Errors in the In-Line Sagnac Interferometer Current Sensor//Journal of lightwave technology. 1998. №10. С. 1844.