Approximation of bivariate functions by Fourier-Tchebychev "circular" sums in l2,

Автор: Jurakhonov Olimjon A.

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 2 т.22, 2020 года.

Бесплатный доступ

In this paper the sharp upper bounds of approximation of functions of two variables with generalized Fourier-Chebyshev polynomials for the class of functions L(r)2,ρ(D), r∈N, are calculated in L2,ρ:=L2,ρ(Q), where ρ:=ρ(x,y)=1/√(1-x2)(1-y2), Q:={(x,y):-1≤x,y≤1}, and D is a second order Chebyshev-Hermite operator. The sharp estimates for the best polynomial approximation are obtained by means of weighted average of module of continuity of m-th order with Drf (r∈Z+) in L2,ρ. The sharp estimates for the best approximation of double Fourier series in Fourier-Chebyshev orthogonal system in the classes of functions of several variables which are characterized by generalized module of continuity are given. We first form some classes of functions and then the corresponding methods of approximations, "circular" by partial sum of Fourier-Chebyshev double series, since, unlike the one-dimensional case, there is no natural way of expressing the partial sums of double series...

Еще

Mean-squared approximation, generalized module of continuity, fourier-tchebychev double series, kolmogorov type inequality, shift operator

Короткий адрес: https://sciup.org/143170638

IDR: 143170638   |   DOI: 10.46698/n6807-7263-4866-r

Статья научная