Применение бифуркации и рекомбинации микроканалов для микрофлюидных приложений: литературный обзор

Автор: Павар С.А., Чоукси В.К.

Журнал: Российский журнал биомеханики @journal-biomech

Статья в выпуске: 2 (100) т.27, 2023 года.

Бесплатный доступ

Микрожидкостное смешивание используется в микромасштабных системах для быстрого, но тщательного объединения большого количества образцов. Эти устройства способствуют смешиванию проб прежде всего за счет улучшения результата диффузии между потоками нескольких видов. В общем, существует два типа методов микрожидкостного смешивания: активный (при котором используется внешняя силовая сила для возмущения образцов) и пассивный (при котором используются специально разработанные топологии микроканалов для увеличения площади контакта, а также периода контакта образцов). В этом обзорном исследовании используется всесторонний обзор микрофлюидных микросмесителей (активный и пассивный микросмесители). Наряду с изучением гибридных активных и пассивных микросмесителей также тщательно изучается использование жидкостей. Основываясь на этом анализе, мы смогли сравнить индексы смешивания активных и пассивных смесителей, причем максимальный индекс смешивания для активных и пассивных смесителей составляет 0,73, а для пассивных - 0,97. Целью этого обзора является знакомство читателей с микрофлюидикой и ее приложениях.

Еще

Микрофлюидика, активный микросмеситель, пассивный микросмеситель, гибридный микросмеситель, микромасштабные системы, образец, диффузия

Короткий адрес: https://sciup.org/146282744

IDR: 146282744   |   DOI: 10.15593/RZhBiomeh/2023.2.03

Список литературы Применение бифуркации и рекомбинации микроканалов для микрофлюидных приложений: литературный обзор

  • Aubin J., Ferrando M., Jiricny V. Current methods for characterizing mixing and flow in microchannels // Chemical Engineering Science. - 2010. - Vol. 65, No. 6. -P. 2065-2093. DOI: 10.1016/j.ces.2009.12.001
  • Bahrami D., Nadooshan A.A., Bayareh M. Numerical study on the effect of planar normal and Halbach magnet arrays on micromixing // International Journal of Chemical Reactor Engineering. - 2020. - Vol. 18, No. 9. - Article No. 20200080. DOI: 10.1515/ijcre-2020-0080
  • Bai C., Zhou W., Yu S., Zheng T., Wang C. A surface acoustic wave-assisted micromixer with active temperature control // Sensors and Actuators A: Physical. - 2022. -Vol. 346. - Article No. 113833. DOI: 10.1016/j.sna.2022.113833
  • Barbic M., Mock J., Gray A., Schultz S. Electromagnetic micromotor for microfluidics applications // Appl. Phys. Lett. - 2001. - Vol. 79, No. 9. - P. 1399-1401. DOI: 10.1063/1.1398319
  • Bayareh M., Usefian A., Ahmadi Nadooshan A. Rapid mixing of Newtonian and non-Newtonian fluids in a three-dimensional micro-mixer using non-uniform magnetic field // Journal of Heat and Mass Transfer Research. -2019. - Vol. 6, No. 1. - P. 55-61. DOI: 10.22075/JHMTR. 2018.15611.1218
  • Campbell C., Grzybowski B. Microfluidic mixers: from microfabricated to self-assembling devices // Philos. Trans. A Math. Phys. Eng. Sci. - 2004. - Vol. 362, No. 1818. -P. 1069-1086. DOI: 10.1098/rsta.2003.1363
  • Capretto L., Cheng W., Hill M., Zhang X. Micromixing within microfluidic devices // Topics in Current Chemistry. -2011. - Vol. 304. - P. 27-68. DOI: 10.1007/128_2011_150
  • Chang C., Yang R. Electro-kinetic mixing in microfluidic systems // Microfluid. Nanofluid. - 2007. - Vol. 3, No. 5. -P. 501-525. DOI: 10.1007/s10404-007-0178-z
  • Channon R.B., Menger R.F., Wang W., Carrao D.B., Val-labhuneni S., Kota A.K., Henry C.S. Design and application of a self-pumping microfluidic staggered herringbone mixer // Microfluidics and Nanofluidics. - 2021. - Vol. 25, No. 4. - P. 1-8.
  • Dalili A., Montazerian H., Sakthivel K., Tasnim N., Hoorfar M. Dielectrophoretic manipulation of particles on a microfluidics platform with planar tilted electrodes // Sensors and Actuators B: Chemical. - 2021. - Vol. 329. - Article No. 129204. DOI: 10.1016/j.snb.2020.129204
  • Duong L.H., Chen P.C. Simple and low-cost production of hybrid 3D-printed microfluidic devices // Biomicrofluidics. -2019. - Vol. 13, No. 2. - Article No. 024108. DOI: 10.1063/1.5092529
  • Giraldo K.A., Bermudez J.S., Torres C.E., Reyes L.H., Osma J.F., Cruz J.C. Microfluidics for multiphase mixing and liposomal encapsulation of nanobioconjugates: passive vs. acoustic systems // Fluids. - 2021. - Vol. 6, No. 9. - Article No. 309. DOI: 10.3390/ uids6090309
  • Haghighinia A., Movahedirad S., Rezaei A.K., Mostoufi N. On-chip mixing of liquids with highperformance embedded barrier structure // International Journal of Heat and Mass Transfer. - 2020. - Vol. 158. - Article No. 119967. DOI: 10.1016/j.ijheatmasstransfer.2020. 119967
  • He B., Burke B.J., Zhang X., Zhang R., Regnier F.E. A picoliter-volume mixer for microfluidic analytical systems // Analytical Chemistry. - 2001. - Vol. 73, No. 9. -P. 1942-1947. DOI: 10.1021/ac000850x
  • Hessel V., Löwe H., Schönfeld F. Micromixers - a review on passive and active mixing principles // Chemical Engineering Science. - 2005. - Vol. 60, No. 8-9. - P. 2479-2501. DOI: 10.1016/j.ces.2004.11.033
  • Jeong G., Chung S., Kim C., Lee S. Applications of micro-mixing technology // Analyst. - 2010. - Vol. 135, No. 3. -P. 460-473. DOI: 10.1039/b921430e
  • Kim J., Massoudi M., Kim C.N. Characteristics of optimization algorithms applied to the electrode design of a magneto-hydrodynamic micromixer // Journal of Mechanical Science and Technology. - 2018. - Vol. 32, No. 8. - P. 3667-3675. DOI: 10.1007/s12206-018-0719-2
  • Kim S., Kim J., Joung Y.H., Ahn S., Park C., Choi J., Koo C. Monolithic 3D micromixer with an impeller for glass microfluidic systems // Lab. Chip. - 2020. - Vol. 20, No. 23. - P. 4474-4485. DOI: 10.1039/d0lc00823k
  • Kockmann N. Convective micromixers - design and industrial applications // Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science. - 2008. - Vol. 222, No. 5. - P. 807-816. DOI: 10.1243/09544062JMES717
  • Kumar V., Paraschivoiu M., Nigam K.D.P. Single-phase fluid flow and mixing in microchannels // Chemical Engineering Science. - 2011. - Vol. 66, No. 7. - P. 1329-1373.
  • Kurnia J.C., Sasmito A.P. Performance evaluation of liquid mixing in a T-junction passive micro mixer with a twisted tape insert // Industrial & Engineering Chemistry Research. - 2019. - Vol. 59, No. 9. - P. 3904-3915. DOI: 10.1021/acs.iecr.9b04535
  • Lee C., Chang C., Wang Y., Fu L. Microfluidic mixing: a review // International Journal of Molecular Sciences. -2011. - Vol. 12, No. 5. - P. 3263-3287. DOI: 10.3390/ijms12053263
  • Liolli A., Ahamed M.J. Design of a hybrid active and passive efficient micro mixer for 3D printed microfluidics // ASME 2016 International Mechanical Engineering Congress and Exposition. - Phoenix, 2016. - Vol. 50619. - Article No. V007T09A092. DOI: 10.1115/IMECE2016-68759
  • Lo R.C. Application of microfluidics in chemical engineering // Chem. Eng. Process. Tech. - 2013. - Vol. 1. - Article No. 1002. DOI: 10.1515/ijcre-2018-0038
  • Lu L., Ryu K., Liu C. A novel microstirrer and arrays for microfluidic mixing // Proceedings of the ^TAS 2001 Symposium "Micro Total Analysis Systems", 21-25 October 2001. - Monterey, 2001. - P. 28-30. DOI: 10.1007/978-94-010-1015-3_10
  • Lu L.-H., Ryu K., Liu C. A magnetic microstirrer and array for microfluidic mixing // Journal of Microelectromechanical Systems. - 2002. - Vol. 11, No. 5. - P. 462-469. DOI: 10.1109/JMEMS.2002.802899
  • Mahmud F., Tamrin K.F., Mohamaddan S., Watanabe N. Effect of thermal energy and ultrasonication on mixing efficiency in passive micromixers // Processes. - 2021. - Vol. 9, No. 5. - Article No. 891. DOI: 10.3390/pr9050891
  • Mansur E., Mingxing Y., Yundong W., Youyuan D.A.I. A state-of-the-art review of mixing in microfluidic mixers // Chinese Journal of Chemical Engineering. - 2008. - Vol. 16, No. 4. - P. 503-516. DOI: 10.1016/S1004-9541(08)60114-7
  • Meijer H., Singh M., Kang T., den Toonder J., Anderson P. Passive and active mixing in microfluidic devices // Macro-molecular Symposia. - 2009. - Vol. 279, No. 1. -P. 201-209. DOI: 10.1002/masy.200950530
  • Mensing G.A., Pearce T.M, Graham M.D., Beebe D.J. An externally driven magnetic microstirrer // Philos. Trans. A Math. Phys. Eng. Sci. - 2004. - Vol. 362, No. 1818, P. 1059-1068.
  • Modarres P., Tabrizian M. Electrohydrodynamic-driven micromixing for the synthesis of highly monodisperse na-noscale liposomes // ACS Applied Nano Materials. - 2020. - Vol. 3, No. 5. - P. 4000-4013. DOI: 10.1021/acsanm. 9b02407
  • Modarres P., Tabrizian M. Nanoparticle synthesis using an electro-hydrodynamic micromixer // 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS). - 2020. - P. 1068-1070. DOI: 10.1109/ mems46641.2020.9056373
  • Nagy C., Huszank R., Gaspar A. Study of the geometry of open channels in a layer-bed-type microfluidic immobilized enzyme reactor // Analytical and Bioanalytical Chemistry. -2021. - Vol. 413, No. 25. - P. 6321-6332. DOI: 10.1007/ s00216-021-03588-x
  • Nazari M., Chuang P.Y.A., Esfahani J.A., Rashidi S. A comprehensive geometrical study on an induced-charge electro-kinetic micromixer equipped with electrically conductive plates // International Journal of Heat and Mass Transfer. - 2020. - Vol. 146. - Article No. 104293. DOI: 10.1016/j. icheatmasstransfer.2019.104293
  • Nguyen N., Wu Z. Micromixers - a review // Journal of Mi-cromechanics and Microengineering. - 2005. -Vol. 15, No. 2. - DOI: 10.1088/0960-1317/15/2/R01
  • Pawinanto R.E., Yunas J., Hashim A.M. Micropillar based active microfluidic mixer for the detection of glucose concentration // Microelectronic Engineering. - 2020. -Vol. 234. - Article No. 111452. DOI: 10.1016/j.mee. 2020.111452
  • Pratap A., Patra K., Dyakonov A.A. Experimental analysis of ductile-brittle transitions for parallel and intersecting micro-slot grinding in BK-7 glass // Ceramics International. - 2019. - Vol. 45, No. 8. - P. 11013-11026. DOI: 10.1016/ j.ceramint.2019.02.185
  • Razavi Bazaz S., Amiri H.A., Vasilescu S., Abouei Mehrizi A., Jin D., Miansari M., Ebrahimi Warkiani M. Obstacle-free planar hybrid micro mixer with low pressure drop // Microfluidics and Nanofluidics. - 2020. - Vol. 24, No. 8. - P. 1-15. DOI: 10.1007/s10404-020-02367-x
  • Rezaeian M., Nouri M., Hassani-Gangaraj M., Shamloo A., Nasiri R. The effect of non-uniform magnetic field on the efficiency of mixing in droplet-based microfluid-ics: a numerical investigation // Micromachines. - 2022. -Vol. 13, No. 10. - Article No. 1661. DOI: 10.3390/ mi13101661
  • Seo H.S., Kim Y.J. A study on the mixing characteristics in a hybrid type microchannel with various obstacle configurations // Materials Research Bulletin. - 2012. - Vol. 47, No. 10. - P. 2948-2951. DOI: 10.1016/j.materresbull.2012. 04.138
  • Shah I., Su Jeon H., Ali M., Yang D.H., Choi K.H. Optimal parametric mixing analysis of active and passive micromixers using Taguchi method // Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. - 2019. - Vol. 233, No. 6. - P. 1292-1303.
  • Shi H., Zhao Y., Liu Z. Numerical investigation of the secondary flow effect of lateral structure of micromixing channel on laminar flow // Sensors and Actuators B: Chemical. - 2020. - Vol. 321. - Article No. 128503. DOI: 10.1016/j.snb. 2020.128503
  • Stone H., Kim S. Microfluidics: basic issues, applications, and challenges // AIChE J. - 2001. - Vol. 47, No. 6. -P. 1250-1254. DOI: 10.1002/aic.690470602
  • Stroock A., Dertinger S.K.W., Ajdari A., Mezic I., Stone H., Whitesides G. Chaotic mixer for microchannels // Science. - 2002. - Vol. 295, No. 5555. - P. 647-651. DOI: 10.1126/science.1066238 50.
  • Tiboni M., Tiboni M., Pierro A., Del Papa M., Sparaventi S., Cespi M., Casettari L. Microfluidics for Nano medicines manufacturing: an affordable and low-cost 3D printing approach // International Journal of Pharmaceutics. - 2021. - Vol. 599. - Article No. 120464. DOI: 51. 10.1016/j.ijpharm.2021.120464
  • Tomaras G., Kothapalli C.R., Fodor P.S. Serpentine micromixers using extensional mixing elements // 52. Micromachines. - 2022. - Vol. 13, No. 10. – Article No. 1785. DOI: 10.3390/mi13101785
  • Trabzon L., Karimian Gh., Khosroshahi A.R., Gül B., Bakhshayesh A.Gh., Koçak A.F., Aldi Y.E. High-throughput 53. nanoscale liposome formation via electrohydrodynamicbased micromixer // Physics of Fluids. - 2022. - Vol. 34, No. 10. - Article No. 102011. DOI: 10.1063/5.0117073
  • Tsai C.H.D., Lin X.Y. Experimental study on microfluidic 54. mixing with different zigzag angles // Micromachines (Basel). - 2019. - Vol. 10, No. 9. - Article No. 583.
Еще
Статья обзорная