Применение ИК-спектроскопии в анализе зерна (обзор)

Автор: Казаченко аЛ.С., Казаченко А.С., Чаплыгина И.А., Ступко Т.В.

Журнал: Вестник Красноярского государственного аграрного университета @vestnik-kgau

Рубрика: Технология продовольственных продуктов

Статья в выпуске: 9, 2019 года.

Бесплатный доступ

Качественные характеристики пшеницы определяются различными физикохимическими и реологическими анализами. Большинство методов анализа являются дорогими, требуют много времени и вызывают разрушение образцов. Инфракрасная спектроскопия с Фурье-преобразованием является одним из наиболее важных и перспективных инструментов, используемых для анализа пшеницы на различные параметры качества. Этот метод является быстрым и чувствительным, с большим разнообразием методов отбора проб. В ряде исследований различные сорта пшеницы были проанализированы для оценки качества методами ИК-спектроскопии. ИК-спектроскопия работает на основе функциональных групп и предоставляет информацию в виде пиков. На основе пиков определяют содержание влажности, белка, жира, золы, углеводов и твердости зерна. Пики для воды наблюдаются в диапазоне длин волн 1 640 см-1 и 3300 см-1 на основе функциональной группы Н и ОН. Характеристические колебания белка наблюдаются в диапазоне от 1600 до 1700 см-1 и от 1550 до 1570 см-1 на основе связанной группы амида I и амида II соответственно...

Еще

Инфракрасная спектроскопия, зерновые, пшеница, анализ

Короткий адрес: https://sciup.org/140245684

IDR: 140245684

Список литературы Применение ИК-спектроскопии в анализе зерна (обзор)

  • Jaaskelainen A.S., Galvis Rojas L., Bertinetto C.G. Localization of Cereal Grain Components by Vibrational Microscopy and Chemometric Analysis // Imaging Technologies and Data Processing for Food Engineers. - 2016. - V. 21. - P. 41-68.
  • Gholizadeh H., Naserian A.A., Xin H. Detecting carbohydrate molecular structural makeup in different types of cereal grains and different cultivars within each type of grain grown in semi-arid area using FTIR spectroscopy with uni- and multi-variate molecular spectral analyses // Anim Feed Sci Technol. - 2014. - V. 194. - P. 136-144.
  • Mills E.N.C., Parker M.L., Wellner N. Chemical imaging: the distribution of ions and molecules in developing and mature wheat grain // J Cereal Sci. - 2005. - V. 41. - P. 193-201.
  • Barron C., Parker M.L., Mills E.N.C. FTIR imaging of wheat endosperm cell walls in situ reveals compositional and architectural hetero-geneity related to grain hardness // Planta. - 2005. - V. 220. - P. 667-677.
  • Jamme F., Robert P., Bouchet B. Aleurone cell walls of wheat grain: high spatial resolution investigation using synchrotron infrared microspectroscopy // Appl Spectrosc. - 2008. - V. 62. - P. 895-900.
  • Saulnier L., Robert P., Grintchenko M. Wheat endosperm cell walls: spatial heterogeneity of polysaccharide structure and composition using micro-scale enzymatic fingerprinting and FT-IR microspectroscopy // J Cereal Sci. - 2009. - V. 50. - P. 312-317.
  • Bonwell E.S., Fisher T.L., Fritz A.K. [et al.]. Determination of endosperm protein secondary structure in hard wheat breeding lines using synchrotron infrared microspectroscopy // Vib Spectrosc. - 2008. - V. 48. - P. 76-81.
  • Toole G.A., Wilson R.H., Parker M.L. The effect of environment on endosperm cellwall development in Triticum aestivum during grain filling: an infrared spectroscopic imaging study // Planta. - 2007. - V. 225. - P. 1393-1403.
  • Walker A.M., Yu P., Christensen C.R. Fourier transform infrared microspectroscopic analysis of the effects of cereal type and variety within a type of grain on structural makeup in relation to rumen degradation kinetics // J Agric Food Chem. - 2009. - V. 57. - P. 6871-6878.
  • Cubadda F., Carcea M., Aureli F. Minerals and trace elements in the Italian wheat and products // Tecnica Molitoria Intel. - 2004. - V. 58. - P. 129-139.
  • Himmelsbach D.S., Khahili S., Akin D.E. Microspectroscopic imaging of flax // Cell Mol Biol. - 1998. - V. 44. - P. 99-108.
  • Rai M.A., Faqir M.A., Muhammad I.K. [et al.]. Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties // J Food Sci Technol. - 2013. - V. 50(5). - P. 1018-1023.
  • Anjum F.M., Ahmad I., Butt M.S. [et al.]. Improvement in end-use quality of spring wheat varieties grown in different eras // J Food Chem. - 2008. - V. 106. - P. 482-486.
  • Harold E., Fred R., Leonard M. Antioxidant content of whole grain breakfast cereals, fruits and vegetable // J Am Coll Nutr. - 2005. - V. 19. - P. 312-319.
  • Cocchi M., Foca G., Lucisano M. [et al.]. Classification of cereal flours by chemometrie analysis of MIR spectra // J Agric Food Chem. - 2004. - V. 52. - P. 1062-1067.
  • Dowell F.E., Maghirang E.B., Xie F. [et al.]. Predicting wheat quality characteristics and functionality using near-infrared spectroscopy // Cer. Chem. - 2006. - V. 83. - P. 529-536.
  • Rai M.A., Faqir M.A., Muhammad I.K. [et al.]. Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties // J Food Sci Technol. - 2013. - V. 50(5). - P. 1018-1023.
  • Manley M., Zyl L.V., Osborne B.G. Using Fourier transform near-infrared spectroscopy in determining kernel hardness, protein, and moisture content of whole wheat flour // J Near Infrared Spectrosc. - 2002. - V. 10. - P. 71- 76.
  • CheMan Y.B., Setiowaty G. Application of Fourier transform infrared Spectroscopy to determine free fatty acid contents palmolein // Food Chem. - 1999. - V. 66. - P. 109-111.
  • Armstrong P.R., Maghirang E., Xie F. [et al.]. Comparison of dispersive and Fouriertransform БИК instruments for measuring grain and flour attributes // Appl Eng Agric. - 2006. - V. 22. - P. 453-459.
  • Belton P.S., Goodfellow B.J., Wilson R.H. Comparison Fourier transform mid infrared spectroscopy and near infrared reflectance spectroscopy with differential scanning and calorimetry for the study of the staling of bread // Sci Food Agric. - 1991. - V. 51. - P. 453- 471.
  • Alvarez P.A., Ramaswamy H.S., Ismail A.A. High pressure gelation of soy proteins: effect of concentration, pH and additives // Journal of Food Engineering. - 2008. - V. 88(3). - P. 331-340.
  • Ferreira D.S., Galao O.F., Pallone J.A.L. [et al.]. Comparison and application of nearinfrared and midinfrared spectroscopy for determination of quality parameters in soybean samples // Food Control. - 2014. - V. 35(1). - P. 227-232.
  • Yano J., Sato K. FT-IR studies on polymorphism of fats: molecular structures and interactions // Food Research International. - 1999. - V. 32(4). - P. 249-259.
  • Hernandez-Martınez M., Gallardo-Velazquez T., Osorio-Revilla G. [et al.]. Prediction of total fat, fatty acid composition and nutritional parameters in fish fillets using MID FTIR spectroscopy and chemometrics // Food Science and Technology. - 2013. - V. 52(1). - P. 12- 20.
  • Yuen S.N., Choi S.M., Phillips D.L. [et al.]. Raman and FTIR spectroscopic study of carboxymethylated non-starch polysaccharides // Food Chemistry. - 2009. - V. 114(3). - P. 1091-1098.
  • Anjos O., Graca M., Campos P. [et al.]. Application of FTIR-ATR spectroscopy to the quantification of sugarinhoney // Food Chemistry. - 2015. - V. 169. - P. 218-223.
  • Buning-Pfaue H. Analysis of water in food by near infrared spectroscopy // Food Chemistry. - 2003. - V. 82(1). - P. 107-115.
  • Meng X., Sedman J., Van De Voort F.R. Improving the determination of moisture in edibleoils by FTIR spectroscopy using acetonitrile extraction // Food Chemistry. - 2012. - V. 135(2). - P. 722-729.
  • Reder M., Koczon P., Wirkowska M. [et al.]. The application of FT-MIR spectroscopy for the evaluation of energy value, fat content, and fatty acid composition in selected organic oat products // Food Analytical Methods. - 2014. - V. 7(3). - P. 547-554.
  • Sohn M., Barton F.E., McClung A.M. [et al.]. Near-infrared spectroscopy for determination of protein and amylose in rice flour through use of derivatives // Cereal Chemistry. - 2004. - V. 81(3). - P. 341-344.
  • Dogan A., Siyakus G., Severcan F. FTIR spectroscopic characterization of irradiated hazelnut // Food Chemistry. - 2007. - V. 100(3). - P.1106-1114.
  • Ciemniewska-Zytkiewicz H., Brys J., Sujka K. [et al.]. Assessment of the hazelnuts roasting process by pressure differential scanning calorimetry and MID-FT-IR spectroscopy // Food Analytical Methods. - 2015. - V. 8(10). - P. 2465-2473.
  • Quinones-Islas N., Meza-Marquez O.G., Osorio-Revilla G. [et al.]. Detection of adulterants in avocado oil by Mid-FTIR spectroscopy and multivariate analysis // Food Research International. - 2013. - V. 51(1). - P. 148-154.
  • Rohman A., Erwanto Y., CheMan Y.B. Analysis of pork adulteration in beef meat ball using Fourier transform infrared spectroscopy // Meat Science. - 2011. - V. 88(1). - P. 91-95.
  • Xu L., Cai C.B., Cui H.F. [et al.]. Rapid discrimination of pork in Halal and non-Halal Chinese ham sausages by Fourier transform infrared spectroscopy and chemometrics // Meat Science. - 2012. - V. 92(4). - P. 506-510.
  • Sujkaand K., Koczon P. Zastosowanie spektroskopii FT-IR do oznaczania zawartosci alkoholu etylowego w komercyjnych wodkach // Zeszyty Problemowe Postępow Nauk Rolniczych. - 2012. - V. 571. - P. 107-114.
  • Sujka K., Reder M., Ciemniewska-Zytkiewicz H. [et al.]. Zastosowanie spektroskopii FT-IR I analizydyskrym inacyjnej dorozr ozniania wodekpodwzglę demsurowca // Bromatologia I Chemia Toksykologiczna. - 2014. - V. 47(3). - P. 760-764.
  • Delwiche S.R., McKenzie K.S., Webb B.D. Quality characteristics in rice by near-infrared reflectance analysis of whole grain milled samples // Cereal Chemistry. - 1996. - V. 73(2). - P. 257-263.
  • Windham W.R., Lyon B.G., Champagne E.T. Prediction of cooked rice texture quality using near-infrared reflectance analysis of wholegrain milled samples // Cereal Chemistry. - 1997. - V. 74(5). - P. 626-632.
  • Meullenet J.F., Mauromoustakos A., Horner T.B. [et al.]. Prediction of texture of cooked white rice by near-infrared reflectance analysis of whole-grain milled samples // Cereal Chemistry. - 2002. - V. 79(1). - P. 52-57.
  • Sun D.W. Infrared Spectroscopy for Food Quality Analysis and Control; Sun, D.W., Ed.; National University of Ireland: Dublin, Ireland; Academic Press: Cambridge, MA, USA; Elsevier Science: New York, NY, USA, 2009. - P. 424.
  • Roggo Y., Chalus P., Maurer L. [et al.]. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies // J.Pharm. Biomed. Anal. - 2007. - V. 44. - P. 683-700.
  • Fearn T. Chemometrics: An enabling tool for NIR // NIR News. - 2005. - V. 16. - P. 17-19.
  • Levasseur-Garcia C. Overview of Infrared Spectroscopy Methods for Detecting MycoToxins on Cereals // Toxins. - 2018. - V. 10. - P. 38.
  • Caporaso N., Whitworth M.B., Fisk I.D. NearInfrared spectroscopy and hyperspectral imaging for non-destructive quality assessment of cereal grains // Applied spectroscopy reviews. - 2018. - V. 53(8). - P. 667-687.
  • Suchowilska E., Kandler W., Wiwart M. [et al.]. Fourier transform infrared - attenuated total reflection for wheat grain // Int. Agrophys. - 2012. - V. 26. - P. 207-210.
  • Ibrahim A., Csur Varga A., Jolankai M. [et al.]. Applying Infrared Technique as a Nondestructive Method To Assess Wheat Grain Hardness // International Journal of Science and Qualitative Analysis. - 2018. - V. 4(3). - P. 100-107.
  • Pandey P., Srivastava S., Mishra H.N. Comparison of FT-NIR and NIR for evaluation of phyisco-chemical properties of stored wheat grains // Food Quality and Safety. - 2018. - V. 3. - P. 165-172.
  • Sujka K., Koczo P., Ceglinska A. [et al.]. The Application of FT-IR Spectroscopy for Quality Control of Flours Obtained from Polish Producers // Journal of Analytical Methods in Chemistry. - 2017. - V. 23. - P. 100-109.
Еще
Статья научная