Применение интерфейса "мозг-компьютер" в реабилитации пациентов с моторными нарушениями после перенесенного инсульта

Автор: Крючков Ю.А., Щуковский Н.В., Шоломов И.И.

Журнал: Ульяновский медико-биологический журнал @medbio-ulsu

Рубрика: Клиническая медицина

Статья в выпуске: 1, 2019 года.

Бесплатный доступ

Острое нарушение мозгового кровообращения (ОНМК) занимает одну из лидирующих позиций в структуре заболеваемости, смертности и утраты трудоспособности населения не только в Российской Федерации, но и во всем мире. Двигательные расстройства различной степени выраженности являются частым следствием перенесенного ОНМК. В последнее десятилетие все чаще рассматривается вопрос о внедрении высокотехнологичных аппаратных методов реабилитации в стандарт восстановительных процедур для реабилитации пациентов с моторными нарушениями после перенесенного инсульта. Данные методы позволяют максимально активизировать процессы нейропластичности, обеспечить активное участие пациента и высокую интенсивность тренировок в различные восстановительные сроки, снизив нагрузку на медицинский персонал. Использование нейроинтерфейсов по типу «мозг-компьютер» (ИМК) в области реабилитации и улучшения качества жизни больных является перспективным и быстроразвивающимся направлением. В работе описана современная патофизиологическая картина развития двигательных нарушений после перенесенного инсульта, механизмы нейропластичности и влияние на них двигательной реабилитации...

Еще

Нейропластичность, реабилитация, моторные нарушения, перенесенный инсульт, интерфейс "мозг-компьютер"

Короткий адрес: https://sciup.org/14116362

IDR: 14116362   |   DOI: 10.34014/2227-1848-2019-1-8-16

Список литературы Применение интерфейса "мозг-компьютер" в реабилитации пациентов с моторными нарушениями после перенесенного инсульта

  • Инсульт у взрослых: центральный парез верхней конечности. М.; 2017. 106.
  • Белова А.Н., Прокопенко С.В. Нейрореабилитация. 3-е изд., перераб. и доп. М.: Антидор; 2010. 1288.
  • Hatem S.M., Saussez G., Della Faille M., Prist V., Zhang X., Dispa D., Bleyenheuft Y. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery. Frontiers in human neuroscience. 2016; 10: 442.
  • Lawrence E.S., Coshall C., Dundas R., Stewart J., Rudd A.G., Howard R. Estimates of the prevalence of acute Stroke impairments and disability in a multiethnic population. Stroke. 2001; 32 (6): 1279-1284.
  • Bach-Y-Rita P. Theoretical and practical considerations in the restoration of function after stroke. Top Stroke Rehabilitation. 2001; 8 (3): 1-15.
  • Bajaj S., Butler A.J., Drake D., Dhamala M. Functional organization and restoration of the brain motor-execution network after stroke and rehabilitation. Frontiers of Human Neurosciece. 2017; 9 (173): 1-15.
  • Козловская И.Б. Афферентный контроль произвольных движений. М.: Наука; 1976. 296.
  • Молчановский В.В., Тринитатский Ю.В., Ходарев С.В. Вертеброневрология II. Клиническая анатомия и физиология двигательной системы. В 5 ч. Ростов н/Д.: СКНЦ ВШ ЮФУ; 2013. 258.
  • Gracies J.M. Pathophysiology of spastic paresis. II: Emergence of muscle overactivity. Muscle & nerve. 2005; 31 (5): 552-571.
  • Gracies J.M. Pathophysiology of spastic paresis. I: Paresis and soft tissue changes. Muscle & nerve. 2005; 31 (5): 535-551.
  • Кадыков А.С., Черникова Л.А., Шахпаронова Н.В. Реабилитация неврологических больных. М.: МЕДпресс-информ; 2008. 564.
  • Черникова Л.А. Восстановительная неврология: инновационные технологии в нейрореабилитации. М.: МИА; 2016. 344.
  • Levack W.M., Taylor K., Siegert R.J., Dean S.G., McPherson K.M., Weatherall M. Is goal planning in rehabilitation effective? A systematic review. Clinical Rehabilitation. 2006; 20 (9): 739-755.
  • Дамулин И.В., Екушева Е.В. Процессы нейропластичности после инсульта. Неврология, нейропсихиатрия, психосоматика. 2014; 3: 69-74.
  • Харченко Е.П., Клименко М.И. Пластичность и регенерация мозга. Неврологический журнал. 2006; 11 (6): 37-45.
  • Червяков А.В., Подашева А.Г., Коржова Ю.Е., Супонева Н.А., Черникова Л.А., Пирадов М.А. Современные терапевтические возможности ритмической транскраниальной стимуляции в лечении заболеваний нервной системы. РМЖ. 2014; 22: 1567-1573.
  • Corbetta D., Imeri F., Gatti R. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: a systematic review. Journal Physiotherapy. 2015; 61: 117-124.
  • Клочков А.С., Черникова Л.А. Роботизированные и механотерапевтические устройства для восстановления функции руки после инсульта. РМЖ. 2014; 22: 1589-1592.
  • Иванова Г.Е., Бушкова Ю.В., Суворов А.Ю., Стаховская Л.В., Джалагония И.З., Варако Н.А., Ковязина М.С., Бушков Ф.А. Использование тренажера с многоканальной биологической обратной связью «ИМК-экзоскелет» в комплексной программе реабилитации больных после инсульта. Журнал высшей нервной деятельности им. И.П. Павлова. 2017; 66 (4): 464-472.
  • Котов С.В., Турбина Л.Г., Бобров П.Д., Фролов А.А., Павлова О.Г., Курганская М.Е., Бирюкова Е.В. Реабилитация больных, перенесших инсульт, с помощью биоинженерного комплекса «Интерфейс мозг-компьютер + экзоскелет». Журнал неврологии и психиатрии им. С. С. Корсакова. 2014; 12: 66-72.
  • Kim T., Kim S., Lee B. Effects of Action Observational Training Plus Brain-Computer Interface-Based 5 Functional Electrical Stimulation on Paretic Arm Motor Recovery in Patient with Stroke: A Randomized Controlled Trial. Occupational Therapy International. 2016; 23 (1): 39-47.
  • Фролов А.А., Бирюкова Е.В., Бобров П.Д. Интерфейс «мозг-компьютер»: физиологические предпосылки и клиническое применение. Информационно-измерительные и управляющие системы. 2013; 11: 44-56.
  • Бобров П.Д., Исаев М.Р., Коршаков А.В., Огонесян В.В., Керечанин А.В., Поподько А.И. Источники электрофизиологической и гемодинамической активности, значимые для управления гибридным интерфейсом «мозг-компьютер», основанным на распознавании паттернов ЭЭГ и спектрограмм ближнего инфракрасного диапазона при воображении движений. Физиология человека. 2016; 42 (3): 12-24.
  • Mihara M., Hattori N., Hatakenaka M., Yagura H., Kawano T., Hino T. Near-infrared Spectroscopy mediated Neurofeedback Enhances Efficacy of Motor Imagerybased Training in PostStroke Victims. Stroke. 2013; 44 (4): 109-118.
  • Song J., Young B.M., Nigogosyan Z., Walton L.M., Nair V.A., Grogan S.W. Characterizing relationships of DTI, fMRI, and motor recovery in stroke rehabilitation utilizing brain-computer interface technology. Frontiers in Neuroengineering. 2014; 7: 31.
  • Wolpaw J.R., McFarland D.J. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101 (51): 178.
  • Donchin E., Spencer K.M., Wijesinghe R. The Mental Prosthesis: Assessing the Speed of a P300-Based Brain-Computer Interface. IEEE Transactions on Rehabilitation Engineering. 2000; 8 (2): 174-179.
  • Конышев В.А., Карловский Д.В., Славуцкая А.В., Авдейчик В.Г., Шмелев А.С., Шевелев И.А. Исследование опознания задуманных букв и слов по волне Р300 вызванного потенциала мозга человека с помощью нейрокомпьютерного интерфейса. Российский физиологический журнал им. И.М. Сеченова. 2007; 93 (2): 141-149.
  • Pineda J. The functional significance of mu rhythms: translating «seeing» and «hearing» into «doing». Brain research reviews. 2005; 50: 57-68.
  • Takemi M., Masakado Y., Liu M., Ushiba J. Sensorimotor event-related desynchronization represents the excitability of human spinal motoneurons. Neuroscience. 2015; 297: 58-67.
  • Pfurtscheller G., Niedermeyer E., Lopes da Silva F.H. EEG event-related desynchronization (ERD), event related synchronization (ERS). Electroencephalography: basic principles, clinical applications, related fields. 4-th ed. Baltimore; 1999: 958-967.
  • Pfurtscheller G., Neuper C. Future prospects of ERD/ERS in the context of brain-computer interface (BCI) 35 developments. Prog. Brain Res. 2006; 159: 433-437.
  • Blankertz B., Dornhege G., Krauledat M., Curio G., Muller K.-R. The Berlin braincomputer interface: Machine learning based detection of user specific brain states. Journal of universal computer science. 2006; 12 (6): 581-607.
  • Ang K.K., Guan C., Phua K.S. Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke. Frontiers in neuroengineering. 2014; 7: 30.
  • Ang K.K., Chua K.S., Phua K.S. A Randomized Controlled Trial of EEG Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke. Clinical EEG and neuroscience. 2015; 46 (4): 310-320.
  • Chaudhary U., Birbaumer N., Ramos-Murguialday A. Brain-computer interfaces for communication and rehabilitation. Nature Reviews Neurology. 2016; 12 (9): 513-525.
  • Ramos-Murguialday A., Broetz D., Rea M., Laer L., Yilmaz O., Brasil F.L. Brain-machine interface in chronic stroke rehabilitation: a controlled study. Annals of Neurology. 2013; 74 (1): 100-108.
  • Фролов А.А., Мокиенко О.А., Люкманов Р.Х., Черникова Л.А., Котов С.В., Турбина Л.Г., Бобров П.Д., Бирюкова Е.В., Кондур А.А., Иванова Г.Е., Старицын А.Н., Бушкова Ю.В., Джалагония И.З., Курганская М.Е., Павлова О.Г., Будилин С.Ю., Азиатская Г.А., Хижникова А.Е., Червяков А.В., Лукьянов А.Л., Надарейшвили Г.Г. Предварительные результаты контролируемого исследования эффективности технологии ИМК-экзоскелет при постинсультном парезе руки. Вестник РГМУ. 2016; 2: 17-25.
  • Мокиенко О.А., Бобров П.Д., Черникова Л.А., Фролов А.А. Основанный на воображении движений интерфейс-мозг компьютер в реабилитации пациентов с гемипарезом. Бюллетень сибирской медицины. 2013; 12 (2): 30-35.
  • Мокиенко О.А., Люкманов Р.Х., Черникова Л.А., Супонева Н.А., Пирадов М.А., Фролов А.А. Интерфейс «мозг-компьютер»: первый опыт применения в клинической практике в России. Физиология человека. 2016; 42 (1): 31-39.
Еще
Статья научная