Применение рекомбинантного ФСГ в лечении бесплодия, ассоциированного с высоким уровнем фрагментации ДНК сперматозоидов

Автор: Олефир Ю.В., Монаков Д.М., Родионов М.А., Живулько А.Р., Виноградов И.В., Попов Д.М.

Журнал: Экспериментальная и клиническая урология @ecuro

Рубрика: Андрология

Статья в выпуске: 2 т.16, 2023 года.

Бесплатный доступ

Введение. Мужское бесплодие, обусловленное высоким уровнем фрагментации ДНК сперматозоидов, остается одной из значимых проблем репродуктивной медицины. Одним из методов его преодоления может быть применение препаратов рекомбинантного фолликулостимулирующего гормона (ФСГ), однако результаты исследований по данному вопросу неоднозначны. Цель настоящего обзора литературы - систематизация публикаций по данной проблематике. Материалы и методы. Проведены поиск, анализ и систематизация публикаций в базах данных PubMed, eLibrary.ru, Clinicaltrials.gov с использованием ключевых слов «мужское бесплодие» («male infertility»), «фрагментация ДНК сперматозоидов» («sperm DNA fragmentation»), «лечение» («treatment»), «фолликуллостимулирующий гормон» («follicle stimutating hormone»), «ФСГ» («FSH»). Отобрано 76 публикаций, которые были включены в настоящий обзор. Результаты и обсуждение. Целостность генетического материала сперматозоида - одно из обязательных условий формирования нормального эмбриона. Его повреждение реализуется двумя основными путями - индукцией апоптоза и прямым повреждением ДНК активными формами кислорода. ФСГ стимулирует сперматогенез, а также препятствует индукции апоптоза сперматозоидов посредством активации протеинкиназы B/AKT. Также ФСГ регулирует упаковку хроматина и повышает способность сперматозоидов к связыванию с гиалуроновой кислотой. Его применение у бесплодных мужчин приводило к улучшению морфологических показателей спермограммы, увеличению подвижности сперматозоидов, снижению уровня фрагментации ДНК сперматозоидов, однако полученные данные трудно сопоставимы из-за гетерогенности групп пациентов, включенных в исследование, отсутствия стандартизации методов исследования уровня фрагментации ДНК сперматозоидов и использования различных пороговых значений этого показателя. Выводы. Терапия препаратами рекомбинантного ФСГ является одним из перспективных методов преодоления бесплодия у пациентов с высоким уровнем фрагментации ДНК сперматозоидов. Гетерогенность опубликованных исследований не позволяет сделать однозначных выводов относительно ее влияния на целостность генетического материала сперматозоидов. В будущих исследованиях необходимо использование строгих критериев включения, таких как пороговые значения уровня фрагментации ДНК сперматозоидов и результаты фармако-генетического исследования.

Еще

Мужское бесплодие, фрагментация днк сперматозоидов, лечение, фолликулостимулирующий гормон, фсг

Короткий адрес: https://sciup.org/142239009

IDR: 142239009   |   DOI: 10.29188/2222-8543-2023-16-2-99-105

Список литературы Применение рекомбинантного ФСГ в лечении бесплодия, ассоциированного с высоким уровнем фрагментации ДНК сперматозоидов

  • Коршунов М.Н., Коршунова Е.С., Кызласов П.С., Коршунов Д.М., Даренков С.П. Структурные нарушения хроматина сперматозоидов. Патофизиологические аспекты. Клиническая значимость. Вестник урологии 2021;9(1):95–104. [Korshunov M.N., Korshunova E.S., Kyzlasov P.S., Korshunov D.M., Darenkov S.P. Structural disorders of sperm chromatin. Pathophysiological aspects. clinical significance. Vestnik urologii = Urology Herold 2021;9(1):95–104. (In Russian)]. https://doi.org/10.21886/2308-6424-2021-9-1-95-104.
  • Некрасова И.Л., Шестакова В.Г., Иванов А.Г., Артамонов А.А. Исследование фрагментации ДНК сперматозоидов в диагностике мужского бесплодия. Верхневолжский медицинский журнал 2015;(3):42–44. [Nekrasova I.L., Shestakova V.G., Ivanov A.G., Artamonov A.A. Study of sperm DNA fragmentation in the diagnosis of male infertility. Verhnevolzhskij medicinskij zhurnal = Upper Volga Medical Journal 2015;(3):42–4 (In Russian)].
  • Гамидов С.И., Овчинников Р.И., Попова А.Ю., Голубева О.Н., Ушакова И.В. Роль мужчины в привычном невынашивании беременности у супруги. Урология 2016;(1 Suppl):35–43. [Gamidov S.I., Ovchinnikov R.I., Popova A.Yu., Golubeva O.N., Ushakova I.V. The role of a man in the habitual miscarriage of a wife. Urologiya = Urologiia 2016;(1 Suppl):35–43. (In Russian)].
  • Метелев А.Ю., Богданов А.Б., Ивкин Е.В., Митрохин А. А., Воднева М. М., Велиев Е.И. и др. Эффективность гипербарической оксигенации в коррекции уровня фрагментации ДНК сперматозоидов у мужчин с идиопатическим бесплодием. Экспериментальная и клиническая урология 2015;(3):49–54. [Metelev A.Yu., Bogdanov A.B., Ivkin E.V., Mitrokhin A.A., Vodneva M.M., Veliyev E.I., et al. The effectiveness of hyperbaric oxygenation in correcting the level of sperm DNA fragmentation in men with idiopathic infertility. Eksperimentalnaya i klinicheskaya urologiya = Experimental and Clinical Urology 2015;(3):49–54. (In Russian)].
  • Олефир Ю.В., Коршунов М.Н., Живулько А.Р., Монаков Д.М. Лечение бесплодия, ассоциированного с высоким уровнем фрагментации ДНК сперматозоидов. Экспериментальная и клиническая урология 2022;15(1):112–9. [Olefir Yu.V., Korshunov M.N., Zhivulko A.R., Monakov D.M. Treatment of infertility associated with a high level of sperm DNA fragmentation. Eksperimentalnaya i klinicheskaya urologiya = Experimental and Clinical Urology 2022;15(1):112–9. (In Russian)]. https://doi.org/10.29188/2222-8543-2022-15-1-112-119.
  • Виноградов И.В., Виноградова Л.М., Базанов П.А., Юткин Е.В. Лечение мужского бесплодия, обусловленного высокой степенью фрагментации ДНК сперматозоидов. Проблемы репродуктологии 2014;(3):67–72. [Vinogradov I.V., Vinogradova L.M., Bazanov P.A., Yutkin E.V. Treatment of male infertility caused by a high degree of sperm DNA fragmentation. Problemy reproduktologii = Problems of Reproductology 2014;(3):67–72. (In Russian)].
  • Ulloa-Aguirre A, Reiter E, Crépieux P. FSH receptor signaling: complexity of interactions and signal diversity. Endocrinology 2018;159(8):3020–35. https://doi.org/10.1210/en.2018-00452.
  • Santi D, Potì F, Simoni M, Casarini L. Pharmacogenetics of G-protein-coupled receptors variants: FSH receptor and infertility treatment. Best Pract Res Clin Endocrinol Metab 2018;32(2):189–200. https://doi.org/10.1016/j.beem.2018.01.001.
  • Alviggi C, Conforti A, Santi D, Esteves SC, Andersen CY, Humaidan P, et al. Clinical relevance of genetic variants of gonadotrophins and their receptors in controlled ovarian stimulation: a systematic review and meta-analysis. Hum Reprod Update 2018;24(5):599–614. https://doi.org/10.1093/humupd/dmy019.
  • Perez Mayorga M, Gromoll J, Behre HM, Gassner C, Nieschlag E, Simoni M. Ovarian response to follicle-stimulating hormone (FSH) stimulation depends on the FSH receptor genotype. J Clin Endocrinol Metab 2000;85(9):3365–9. https://doi.org/10.1210/jcem.85.9.6789.
  • Behre HM, Greb RR, Mempel A, Sonntag B, Kiesel L, Kaltwasser P, et al. Significance of a common single nucleotide polymorphism in exon 10 of the follicle-stimulating hormone (FSH) receptor gene for the ovarian response to FSH: a pharmacogenetic approach to controlled ovarian hyperstimulation. Pharmacogenet Genomics 2005;15(7):451–6. https://doi.org/10.1097/01.fpc.0000167330.92786.5e.
  • Simoni M, Santi D, Negri L, Hoffmann I, Muratori M, Baldi E, et al. Treatment with human, recombinant FSH improves sperm DNA fragmentation in idiopathic infertile men depending on the FSH receptor polymorphism p.N680S: a pharmacogenetic study. Hum Reprod 2016;31(9):1960–9. https://doi.org/10.1093/humrep/dew167.
  • Wu Q, Zhang J, Zhu P, Jiang W, Liu S, Ni M, et al. . The susceptibility of FSHB−211G > T and FSHR G-29A, 919A > G, 2039A > G polymorphisms to men infertility: an association study and meta-analysis. BMC Med Genet 2017;18(1):81. https://doi.org/10.1186/s12881-017-0441-4.
  • Nieschlag E, Simoni M, Gromoll J, Weinbauer GF. Role of FSH in the regulation of spermatogenesis: clinical aspects. Clin Endocrinol 1999;51(2):139–46. https://doi.org/10.1046/j.1365-2265.1999.00846.x.
  • Kumar TR, Wang Y, Lu N, Matzuk MM. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet 1997;15(2):201–4. https://doi.org/10.1038/ng0297-201.
  • Abel MH, Wootton AN, Wilkins V, Huhtaniemi I, Knight PG, Charlton HM. The effect of a null mutation in the follicle-stimulating hormone receptor gene on mouse reproduction. Endocrino- logy 2000;141(5):1795–803. https://doi.org/10.1210/endo.141.5.7456.
  • Dierich A, Sairam MR, Monaco L, Fimia GM, Gansmuller A, LeMeur M, et al. . Impairing follicle-stimulating hormone (FSH) signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc Natl Acad Sci USA 1998;95(23):13612–7.
  • Kliesch S, Behre HM, Nieschlag E. Recombinant human follicle-stimulating hormone and human chorionic gonadotropin for induction of spermatogenesis in a hypogonadotropic male. Fertil Steril 1995;63(6):1326–8. https://doi.org/10.1016/S0015-0282(16)57619-5.
  • Shiraishi K, Matsuyama H. Gonadotoropin actions on spermatogenesis and hormonal therapies for spermatogenic disorders [Review]. Endocr J 2017;64(2):123–31. https://doi.org/10.1507/endocrj.EJ17-0001.
  • Baccetti B, Piomboni P, Bruni E, Capitani S, Gambera L, Moretti E, et al. Effect of follicle-stimulating hormone on sperm quality and pregnancy rate. Asian J Androl 2004;6(2):133–7.
  • Colacurci N, Monti MG, Fornaro F, Izzo G, Izzo P, Trotta C, et al. . Recombinant human FSH reduces sperm DNA fragmentation in men with idiopathic oligoasthenoteratozoospermia. J Androl 2012;33(4):588–93. https://doi.org/10.2164/jandrol.111.013326.
  • Caroppo E, Niederberger C, Vizziello GM, D'Amato G. Recombinant human follicle-stimulating hormone as a pretreatment for idiopathic oligoasthenoteratozoospermic patients undergoing intracytoplasmic sperm injection. Fertil Steril 2003;80(6):1398–403. https://doi.org/10.1016/S0015-0282(03)02202-7.
  • Efesoy O, Cayan S, Akbay E. The efficacy of recombinant human follicle-stimulating hormone in the treatment of various types of male-factor infertility at a single university hospital. J Androl 2009;30(6):679–84. https://doi.org/10.2164/jandrol.108.007278.
  • Barbonetti A, Calogero AE, Balercia G, Garolla A, Krausz C, La Vignera S, et al. The use of follicle stimulating hormone (FSH) for the treatment of the infertile man: position statement from the Italian Society of Andrology and Sexual Medicine (SIAMS). J Endocrinol Invest 2018;41(9):1107–22. https://doi.org/10.1007/s40618-018-0843-y.
  • Attia AM, Abou-Setta AM, Al-Inany HG. Gonadotrophins for idiopathic male factor subfertility. Cochrane Database Syst Rev 2013:CD005071. https://doi.org/10.1002/14651858.CD005071.pub4.
  • Santi D, Granata AR, Simoni M. FSH treatment of male idiopathic infertility improves pregnancy rate: a meta-analysis. Endocr Connect 2015;4:R46–58. https://doi.org/10.1530/EC-15-0050.
  • Guzick DS, Overstreet JW, Factor-Litvak P, Brazil CK, Nakajima ST, Coutifaris C, et al. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med 2001;345:1388–93. https://doi.org/10.1056/NEJMoa003005.
  • Leushuis E, van der Steeg JW, Steures P, Repping S, Bossuyt PM, Mol BW, et al. Semen analysis and prediction of natural conception. Hum Reprod 2014;29(7):1360–7. https://doi.org/10.1093/humrep/deu082.
  • Casamonti E, Vinci S, Serra E, Fino MG, Brilli S, Lotti F, et al. Short-term FSH treatment and sperm maturation: a prospective study in idiopathic infertile men. Andrology 2017;5(3):414–22. https://doi.org/10.1111/andr.12333.
  • Yagci A, Murk W, Stronk J, Huszar G. Spermatozoa bound to solid state hyaluronic acid show chromatin structure with high DNA chain integrity: an acridine orange fluorescence study. J Androl 2010;31(6):566–72. https://doi.org/10.2164/jandrol.109.008912.
  • Tamburrino L, Marchiani S, Montoya M, Elia Marino F, Natali I, Cambi M, et al. Mechanisms and clinical correlates of sperm DNA damage. Asian J Androl 2012;14(1):24–31. https://doi.org/10.1038/ aja.2011.59.
  • Rex AS, Aagaard J, Fedder J. DNA fragmentation in spermatozoa: a historical review. Andrology 2017;5(4):622–30. https://doi.org/10.1111/andr.12381.
  • Sakkas DE, Seli GC, Manicardi M, Nijs W, Ombelet D. Bizzaro: the presence of abnormal spermatozoa in the ejaculate: did apoptosis fail? Hum Fertil 2004;7(2):99–103. https://doi.org/10.1080/14647270410001720464.
  • Muratori M, Tamburrino L, Marchiani S, Cambi M, Olivito B, Azzari C, et al. Investigation on the origin of sperm DNA fragmentation: role of apoptosis, immaturity and oxidative stress. Mol Med 2015;21(1):109–22. https://doi.org/10.2119/molmed.2014.00158.
  • Sakkas D, Seli E, Bizzaro D, Tarozzi N, Manicardi GC. Abnormal spermatozoa in the ejaculate: abortive apoptosis and faulty nuclear remodelling during spermatogenesis. Reprod Biomed Online 2003;7(4):428–32. https://doi.org/10.1016/S1472-6483(10)61886-X.
  • O'Flaherty C, Matsushita-Fournier D. Reactive oxygen species and protein modifications in spermatozoa. Biol Reprod 2017;97(4):577–85. https://doi.org/10.1093/biolre/iox104.
  • Aitken RJ. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol Reprod Dev 2017;84(10):1039–52. https://doi.org/10.1002/mrd.22871.
  • Lotti F, Tamburrino L, Marchiani S, Maseroli E, Vitale P, Forti G, et al. DNA fragmentation in two cytometric sperm populations: relationship with clinical and ultrasound characteristics of the male genital tract. Asian J Androl 2017;19(3):272–9. https://doi.org/10.4103/1008-682X.174854.
  • Muratori M, Maggi M, Spinelli S, Filimberti E, Forti G, Baldi E. Spontaneous DNA fragmentation in swim-up selected human spermatozoa during long term incubation. J Androl 2003;24(2):253–62. https://doi.org/10.1002/j.1939-4640.2003.tb02670.x.
  • Toro E, Fernández S, Colomar A, Casanovas A, Alvarez JG, López-Teijón M, et al. Processing of semen can result in increased sperm DNA fragmentation. Fertil Steril 2009;92(6):2109–12. https://doi.org/10.1016/j.fertnstert.2009.05.059.
  • Gosálvez J, Cortés-Gutiérrez EI, Nuñez R, Fernández JL, Caballero P, López-Fernández C, et al. A dynamic assessment of sperm DNA fragmentation versus sperm viability in proven fertile human donors. Fertil Steril 2009;92(6):1915–9. https://doi.org/10.1016/j.fertnstert.2008.08.136.
  • Zini A, Nam RK, Mak V, Phang D, Jarvi K. Influence of initial semen quality on the integrity of human sperm DNA following semen processing. Fertil Steril 2000;74(4):824–7. https://doi.org/10.1016/ S0015-0282(00)01495-3.
  • Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K, et al. . Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod 1999;14(4):1039–49. https://doi.org/10.1093/humrep/14.4.1039.
  • Giwercman A, Lindstedt L, Larsson M, Bungum M, Spano M, Levine RJ, et al. Sperm chromatin structure assay as an independent predictor of fertility in vivo: a case-control study. Int J Androl 2010;33(1):e221–7. https://doi.org/10.1111/j.1365-2605.2009.00995.x.
  • Muratori M, Marchiani S, Tamburrino L, Cambi M, Lotti F, Natali I, et al. DNA fragmentation in brighter sperm predicts male fertility independently from age and semen parameters. Fertil Steril 2015;104(3):582–90.e4. https://doi.org/10.1016/j.fertnstert.2015.06.005.
  • Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S, et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod 2012;27(10):2908–17. https://doi.org/10.1093/humrep/des261.
  • Cissen M, Wely MV, Scholten I, Mansell S, Bruin JP, Mol BW, et al. Measuring sperm DNA fragmentation and clinical outcomes of medically assisted reproduction: a systematic review and meta-analysis. PLoS ONE 2016;11:e0165125. https://doi.org/10.1371/journal.pone.0165125.
  • Simon L, Zini A, Dyachenko A, Ciampi A, Carrell DT. A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J Androl 2017;19(1):80–90. https://doi.org/10.4103/1008-682X.182822.
  • Martínez-Soto JC, Domingo JC, Cordobilla B, Nicolás M, Fernández L, Albero P, et al. Dietary supple-mentation with docosahexaenoic acid (DHA) improves seminal an-tioxidant status and decreases sperm DNA fragmentation. System Biol Reprod Med 2016;62(6):387–95. https://doi.org/10.1080/19396368.2016.1246623.
  • Gual-Frau J, Abad C, Amengual MJ, Hannaoui N, Checa M A., Ribas-Maynou J, et al. Oral antioxidant treatment partly improves integrity of human sperm DNA in infertile grade I varicocele patients. Hum Fertil 2015;18(3):225–9. https://doi.org/10.3109/14647273.2015.1050462.
  • Jannatifar R, Parivar K, Roodbari NH, Nasr-Esfahani MH. Effects of N-acetyl-cysteine supplementation on sperm quality, chromatin integrity and level of oxidative stress in infertile men. Reprod Biol Endocrinol 2019;17(1):24. https://doi.org/10.1186/s12958-019-0468-9.
  • Гамидов С.И., Овчинников Р.И., Попова А.Ю. Двойное слепое рандомизированное плацебо-контролируемое исследование эффективности и безопасности комплекса ацетил-L-карнитина, L-карнитина фумарата и альфа-липоевой кислоты (СпермАктин® Форте) в лечении мужского бесплодия. Урология 2016;(1 Suppl):35–43. [Gamidov S.I., Ovchinnikov R.I., Popova A.Yu.. Double-blind, randomized, placebo-controlled study of the efficacy and safety of a complex of acetyl-L-carnitine, L-carnitine fumarate and alpha-lipoic acid (SpermActin® Forte) in the treatment of male infertility. Urologiya = Urol 2016;(1 Suppl):35–43. (In Russian)].
  • Oleszczuk K, Augustinsson L, Bayat N, Giverkman, Bungum M. Prevalence of high DNA fragmentation index in male partners of unexplained infertile couples. Andrology 2013;(1):357–60. https://doi.org/10.1111/j.2047-2927.2012.00041.x.
  • Williams EA, Parker M, Robinson A, Pitt S, Pacey AA. A randomized placebo- controlled trial to investigate the effect of lactolycopene on semen quality in healthy males. Eur J Nutr 2019;59(2):825–33. https://doi.org/ 10.1007/s00394-019-02091-5.
  • Showell MG, Mackenzie-Proctor R, Brown J, Yazdani A, Stankiewicz MT, Hart RJ. Antioxidants for male subfertility. Cochrane Database Syst Rev 2014:CD007411. https://doi.org/10.1002/14651858. CD007411.pub3.
  • Santi D, Spaggiari G, Simoni M. Sperm DNA fragmentation index as a promising predictive tool for male infertility diagnosis and treatment management – meta-analyses. Reprod Biomed Online 2018;37(3):315–26. https://doi.org/10.1016/j.rbmo.2018.06.023.
  • Garolla A, Selice R, Engl B, Bertoldo A, Menegazzo M, Finos L, et al. Spermatid count as a predictor of response to FSH therapy. Reprod Biomed Online 2014;29(1):102–12. https://doi.org/10.1016/ j.rbmo.2014.02.014.
  • Ruvolo G, Roccheri MC, Brucculeri AM, Longobardi S, Cittadini E, Bosco L. Lower sperm DNA fragmentation after r-FSH administration in functional hypogonadotropic hypogonadism. J Assist Reprod Genet 2013;30(4):497–503. https://doi.org/10.1007/s10815-013-9951-y.
  • Palomba S, Falbo A, Espinola S, Rocca M, Capasso S, Cappiello F, et al. Effects of highly purified follicle-stimulating hormone on sperm DNA damage in men with male idiopathic subfertility: a pilot study. J Endocrinol Invest 2011;34(10):747–52. https://doi.org/10.3275/7745.
  • Garolla A, Ghezzi M, Cosci I, Sartini B, Bottacin A, Engl B, et al. FSH treatment in infertile males candidate to assisted reproduction improved sperm DNA fragmentation and pregnancy rate. Endocrine 2017;56(2):416–25. https://doi.org/10.1007/s12020-016-1037-z.
  • Colacurci N, De Leo V, Ruvolo G, Piomboni P, Caprio F, Pivonello R, et al. Recombinant FSH improves sperm DNA damage in male infertility: a phase II clinical trial. Front Endocrinol 2018;9:383. https://doi.org/10.3389/fendo.2018.00383.
  • Muratori M, Tamburrino L, Tocci V, Costantino A, Marchiani S, Giachini C, et al. Small variations in crucial steps of TUNEL assay coupled to flow cytometry greatly affect measures of sperm DNA fragmentation. J Androl 2010;31(4):336–45. https://doi.org/10.2164/jandrol.109.008508.
  • Muratori M, Forti G, Baldi E. Comparing flow cytometry and fluorescence microscopy for analyzing human sperm DNA fragmentation by TUNEL labeling. Cytometry A 2008;73(9):785–7. https://doi.org/10.1002/cyto.a.20615.
  • Ferlin A, Vinanzi C, Selice R, Garolla A, Frigo AC, Foresta C. Toward a pharmacogenetic approach to male infertility: polymorphism of follicle-stimulating hormone beta-subunit promoter. Fertil Steril 2011;96(6):1344–9. https://doi.org/10.1016/j.fertnstert.2011.09.034.
  • Chun SY, Eisenhauer KM, Minami S, Billig H, Perlas E, Hsueh AJ. Hormonal regulation of apoptosis in early antral follicles: follicle-stimulating hormone as a major survival factor. Endocrino- logy 1996;137(4):1447–56. https://doi.org/10.1210/endo.137.4.8625923.
  • Tsai-Turton M, Luderer U. Opposing effects of glutathione depletion and follicle-stimulating hormone on reactive oxygen species and apoptosis in cultured preovulatory rat follicles. Endocrino- logy 2006;147(3):1224–36. https://doi.org/10.1210/en.2005-1281.
  • Tesarik J, Martinez F, Rienzi L, Iacobelli M, Ubaldi F, Mendoza C, et al. . In vitro effects of FSH and testosterone withdrawal on caspase activation and DNA fragmentation in different cell types of human seminiferous epithelium. Hum Reprod 2002;17(7):1811–9. https://doi.org/10.1093/humrep/17.7.1811.
  • Ruwanpura SM, McLachlan RI, Stanton PG, Meachem SJ. Follicle-stimulating hormone affects spermatogonial survival by regulating the intrinsic apoptotic pathway in adult rats. Biol Reprod 2008;78(4):705–13. https://doi.org/10.1095/biolreprod.107.065912.
  • Vera Y, Erkkilä K, Wang C, Nunez C, Kyttänen S, Lue Y, et al. Involvement of p38 mitogen-activated protein kinase and inducible nitric oxide synthase in apoptotic signaling of murine and human male germ cells after hormone deprivation. Mol Endocrinol 2006;20(7):1597–609. https://doi.org/10.1210/me.2005-0395.
  • Billig H, Furuta I, Rivier C, Tapanainen J, Parvinen M, Hsueh AJ. Apoptosis in testis germ cells: developmental changes in gonadotropin dependence and localization to selective tubule stages. Endocrino-logy 1995;136(1):5–12. https://doi.org/10.1210/endo.136.1.7828558.
  • Gonzalez-Robayna IJ, Falender AE, Ochsner S, Firestone GL, Richards JS. Follicle-stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-lnduced kinase (Sgk): evidence for A kinase-independent signaling by FSH in granulosa cells. Mol Endocrinol 2000;14(8):1283–300. https://doi.org/10.1210/mend.14.8.0500.
  • Baccetti B, Strehler E, Capitani S, Collodel G, De Santo M, Moretti E, et al. The effect of follicle stimulating hormone therapy on human sperm structure (Notulae seminologicae 11). Hum Reprod 1997;12(9):1955–68. https://doi.org/10.1093/humrep/12.9.1955.
  • Krishnamurthy H, Danilovich N, Morales CR, Sairam MR. Qualitative and quantitative decline in spermatogenesis of the follicle-stimulating hormone receptor knockout (FORKO) mouse. Biol Reprod 2000;62(5):1146–59. https://doi.org/10.1095/biolreprod62.5.1146.
  • Sakkas D, Manicardi G, Bianchi PG, Bizzaro D, Bianchi U. Relationship between the presence of endogenous nicks and sperm chromatin packaging in maturing and fertilizing mouse spermatozoa. Biol Reprod 1995;52(5):1149–55. https://doi.org/10.1095/biolreprod52.5.1149.
  • Marcon L, Boissonneault G. Transient DNA strand breaks during mouse and human spermiogenesis new insights in stage specificity and link to chromatin remodeling. Biol Reprod 2004;70(4):910–8. https://doi.org/10.1095/biolreprod.103.022541.
  • Parmegiani L, Cognigni GE, Bernardi S, Troilo E, Ciampaglia W, Filicori M. «Physiologic ICSI»: hyaluronic acid (HA) favors selection of spermatozoa without DNA fragmentation and with normal nucleus, resulting in improvement of embryo quality. Fertil Steril 2010;93(2):598–604. https://doi.org/10.1016/j.fertnstert.2009.03.033.
Еще
Статья научная