Применение сеточно-характеристического метода для моделирования распространения упругих волн в геологических средах с наличием трещин с использованием наложенных сеток
Автор: Митьковец И.А.
Журнал: Труды Московского физико-технического института @trudy-mipt
Рубрика: Математика
Статья в выпуске: 3 (59) т.15, 2023 года.
Бесплатный доступ
Исследование зон геологических разломов важно для определения запасов нефти и газа в месторождениях. Для моделирования рассеяния волн в зонах трещиноватости используют численные методы на структурированных вычислительных сетках для оптимизации вычислительных ресурсов. Однако эти методы позволяют рассчитать рассеяние волн на трещинах только в направлении координатных осей. Чтобы моделировать более реалистичные трещиноватые поля, используют численные методы на неструктурированных вычислительных сетках или структурированных криволинейных вычислительных сетках, требующих больших вычислительных мощностей и важных при решении обратных задач. В данной работе предлагается численный метод с использованием наложенных сеток, где расчеты проводятся на структурированных регулярных вычислительных сетках с наложенными сетками, повернутыми вдоль трещин. Основным фактором является аналитическое задание якобиана вращения объектов, описывающих трещину, и малый локальный размер наложенных вычислительных сеток для экономии вычислительных ресурсов.
Наложенные сетки, сеточно-характеристический метод, упругие волны, распространение волн, сейсморазведка, трещины, геологические разломы, рассеяние волн
Короткий адрес: https://sciup.org/142239990
IDR: 142239990
Список литературы Применение сеточно-характеристического метода для моделирования распространения упругих волн в геологических средах с наличием трещин с использованием наложенных сеток
- Cui X., Lines L.R., Krebes E.S. Seismic modelling for geological fractures // Geophysical Prospecting. 2017. V. 66(1). P. 157–168.
- Schoenberg M. Elastic wave behaviour across linear slip interfaces // Journal of the Acoustical Society of America. 1980. V. 68. P. 1516–1521.
- Pyrak-Nolte L.J., Myer L.R., Cook N.G.W. Anisotropy in seismic velocities and amplitudes from multiple parallel fractures // Journal of Geophysical Research. 1990. V. 95. P. 11345–11358.
- Hsu C.-J., Schoenberg M. Elastic waves through a simulated fractured medium // Geophysics. 1993. V. 58(7). P. 964–977.
- Backus G.E. Long-wave elastic anisotropy produced by horizontal layering // Journal of Geophysical Research. 1962. V. 67. P. 4427–4440.
- Zhang J. Elastic wave modeling in fractured media with an explicit approach // Geophysics. 2005. V. 70(5). P. T75–T85.
- Slawinski R.A., Krebes E.S. Finite-difference modeling of SH-wave propagation in nonwelded contact media // Geophysics. 2002. V. 67. P. 1656–1663.
- Slawinski R.A., Krebes E.S. The homogeneous finite difference formulation of the P-SV wave equation of motion // Studia Geophysica et Geodaetica. 2002. V. 46. P. 731–751.
- Zhang J., Gao H. Elastic wave modelling in 3-D fractured media: an explicit approach // Geophys. J Int. 2009. V. 177. N 3. P. 1233–1241.
- Lan H.Q., Zhang Z.J. Seismic wavefield modeling in media with fluid-filled fractures and surface topography // Applied Geophysics. 2012. V. 9(3). P. 301–312.
- Favorskaya A.V., Zhdanov M.S., Khokhlov N.I., Petrov I.B. Modelling the wave phenomena in acoustic and elastic media with sharp variations of physical properties using the grid characteristic method // Geophysical Prospecting. 2018. V. 66(8). P. 1485–1502.
- Guo J., Shuai D., Wei J., Ding P., Gurevich B. P-wave dispersion and attenuation due to scattering by aligned fluid saturated fractures with finite thickness: Theory and experiment // Geophysical Journal International. 2018. V. 215(3). P. 2114–2133.
- Chen T., Fehler M., Fang X., Shang X., Burns D. SH wave scattering from 2-D fractures using boundary element method with linear slip boundary condition // Geophysical Journal International. 2012. V. 188(1). P. 371–380.
- Cho Y., Gibson R.L., Vasilyeva M., Efendiev Y. Generalized multiscale finite elements for simulation of elastic-wave propagation in fractured media // Geophysics. 2018. V. 83(1). P. WA9-WA20.
- Chung E.T., Efendiev Y., Gibson R.L., Vasilyeva M. A generalized multiscale finite element method for elastic wave propagation in fractured media // GEM-International Journal on Geomathematics. 2016. V. 7(2). P. 163–182.
- Vasilyeva M., De Basabe J.D., Efendiev Y., Gibson Jr.R.L. Multiscale model reduction of the wave propagation problem in viscoelastic fractured media // Geophysical Journal International. 2016. V. 217(1). P. 558–571.
- Franceschini A., Ferronato M., Janna C., Teatini P. A novel Lagrangian approach for the stable numerical simulation of fault and fracture mechanics // Journal of Computational Physics. 2016. V. 314. P. 503–521.
- Khokhlov N., Stognii P. Novel Approach to Modeling the Seismic Waves in the Areas with Complex Fractured Geological Structures // Minerals. 2020. V. 10(2). P. 122.
- Bosma S., Hajibeygi H., Tene M., Tchelepi H.A. Multiscale finite volume method for discrete fracture modeling on unstructured grids (MS-DFM) // Journal of Computational Physics. 2017. V. 351. P. 145–164.
- Kvasov, I., Petrov, I. Numerical Modeling of Seismic Responses from Fractured Reservoirs by the Grid-characteristic Method // Society of Exploration Geophysicists. 2019.
- Leviant V.B., Petrov I.B., Chelnokov F.B., Antonova I.Y. Nature of the scattered seismic response from zones of random clusters of cavities and fractures in a massive rock // Geophysical prospecting. 2017. V. 55(4). P. 507–524.
- De Basabe J.D., Sen M.K., Wheeler M.F. Elastic wave propagation in fractured media using the discontinuous Galerkin method // Geophysics. 2016. V. 81(4). P. T163–T174.
- Mollhoff M., Bean C.J. Validation of elastic wave measurements of rock fracture compliance using numerical discrete particle simulations // Geophysical Prospecting. 2009. V. 57(5). P. 883–895.
- Lisitsa V., Tcheverda V., Botter C. Combination of the discontinuous Galerkin method with finite differences for simulation of seismic wave propagation // Journal of Computational Physics. 2016. V. 311. P. 142–157.
- Novikov M.A., Lisitsa V.V., Kozyaev A.A. Numerical modeling of wave processes in fractured porous fluid-saturated media // Numerical methods and programming. 2018. V. 19. P. 130–149.
- Wang K., Peng S., Lu Y., Cui X. The velocity-stress finite-difference method with a rotated staggered grid applied to seismic wave propagation in a fractured medium // Geophysics. 2020. V. 85(2). P. T89–T100.
- Cho Y., Gibson R.L., Lee J., Shin C. Linear-slip discrete fracture network model and multiscale seismic wave simulation // Journal of Applied Geophysics. 2019. V. 164. P. 140–152.
- Vamaraju J., Sen M.K., De Basabe J., Wheeler M. Enriched Galerkin finite element approximation for elastic wave propagation in fractured media // Journal of Computational Physics. 2018. V. 372. P. 726–747.
- Hou X., Liu N., Chen K., Zhuang M., Liu Q.H. The Efficient Hybrid Mixed Spectral Element Method With Surface Current Boundary Condition for Modeling 2.5-D Fractures and Faults // IEEE Access. 2020. V. 8. P. 135339–135346.
- Li J., Khodaei Z.S., Aliabadi M.H. Spectral BEM for the analysis of wave propagation and fracture mechanics // Journal of Multiscale Modelling. 2017. V. 8(03n04). P. 1740007.
- Ponomarenko R., Sabitov D., Charara M. Spectral element simulation of elastic wave propagation through fractures using linear slip model: microfracture detection for CO2 storage // Geophysical Journal International. 2020. V. 223, I. 3. P. 1794–1804.
- Ruzhanskaya A., Khokhlov N. Modelling of Fractures Using the Chimera Grid Approach // In 2nd Conference on Geophysics for Mineral Exploration and Mining. European Association of Geoscientists & Engineers. — 2018, September. V. 2018. N 1. P. 1–5.
- Berger M.J., Joseph E.O. Adaptive mesh refinement for hyperbolic partial differential equations // Journal of Computational Physics. 1984. V. 53(3). P. 484–512.
- Steger J.L. A chimera grid scheme: advances in grid generation // Am. Mech. Eng. Fluids Eng. 1983. V. 5. P. 55–70.
- Steger J.L., Benek J.A. On the use of composite grid schemes in computational aerodynamics // Computer Methods in Applied Mechanics and Engineering. 1987. V. 64(1–3). P. 301–320.
- English R.E., Qiu L., Yu Y., Fedkiw R. Chimera grids for water simulation // Proceedings SCA 2013: 12th ACM SIGGRAPH / Eurographics Symposium on Computer Animation. 2013. P. 85–94.
- Pena D., Deloze T., Laurendeau E., Hoarau Y. Icing modelling in NSMB with chimera overset grids // AIP Conference Proceedings. 2015. 1648. 030034.
- Chesshire G., Henshaw W.D. Composite overlapping meshes for the solution of partial differential equations // Journal of Computational Physics. 1990. V. 90(1). P. 1–64.
- Storti B., Garelli L., Storti M., D’Elia J. A matrix-free Chimera approach based on Dirichlet–Dirichlet coupling for domain composition purposes // Computers & Mathematics with Applications. 2020. V. 79(12). P. 3310–3330.
- Brezzi F., Lions J.L., Pironneau O. Analysis of a Chimera method // Comptes Rendus de l’Academie des Sciences-Series I-Mathematics. 2001. V. 332(7). P. 655–660.
- Chan W. Overset grid technology development at NASA Ames Research Center // Computers & Fluids. 2009. V. 38. P. 496–503.
- Mayer U.M., Popp A., Gerstenberger A., Wall W.A. 3D fluid–structure-contact interaction based on a combined XFEM FSI and dual mortar contact approach // Computational Mechanics. 2010. V. 46(1). P. 53–67.
- Zhang Y., Yim S.C., Del Pin F. A nonoverlapping heterogeneous domain decomposition method for three-dimensional gravity wave impact problems // Computers & Fluids. 2015. V. 106. P. 154–170.
- Nguyen V.T., Vu D.T., Park W.G., Jung C.M. Navier–Stokes solver for water entry bodies with moving Chimera grid method in 6DOF motions // Computers & Fluids. 2016. V. 140. P. 19–38.
- Formaggia L., Vergara C., Zonca S. Unfitted extended finite elements for composite grids // Computers & Mathematics with Applications. 2018. V. 76(4). P. 893–904.
- Zhdanov M.S. Inverse theory and applications in geophysics // Elsevier. 2015. V. 36.
- Riemann B. Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite // Abhandlungen der Koniglichen Gesellschaft der Wissenschaften zu Gottingen. 1860. V. 8. P. 43–66.
- Kholodov A.S., Kholodov Ya.A. Monotonicity criteria for difference schemes designed for hyperbolic equations // Computational Mathematics and Mathematical Physics. 2006. V. 46(9). P. 1560–1588.
- Favorskaya A., Khokhlov N. Types of elastic and acoustic wave phenomena scattered on gas- and fluid-filled fractures // Procedia Computer Science. 2020. V. 10(5). P. 307–314.
- Favorskaya A., Petrov I. A novel method for investigation of acoustic and elastic wave phenomena using numerical experiments // Theoretical and Applied Mechanics Letters. 2020. V. 10(5). P. 307–314.
- Malovichko M., Khokhlov N., Yavich N., Zhdanov M. Approximate solutions of acoustic 3D integral equation and their application to seismic modeling and full-waveform inversion // Journal of Computational Physics. 2017. V. 346. P. 318–339.
- Malovichko M., Khokhlov N., Yavich N., Zhdanov M.S. Incorporating known petrophysical model in the seismic full waveform inversion using the Gramian constraint // Geophysical Prospecting. 2020. V. 68(4). P. 1361–1378.