Применение сверточных искусственных нейронных сетей для классификации товаров целевой группы по выделенным признакам
Автор: Поляков Ф.А., Поляков А.П.
Журнал: Сетевое научное издание «Системный анализ в науке и образовании» @journal-sanse
Рубрика: Моделирование и анализ данных
Статья в выпуске: 1, 2025 года.
Бесплатный доступ
В работе рассматривается один из этапов определения кода товарной номенклатуры внешнеэкономической деятельности для товаров, входящих в целевую группу «обувь», состоящий в анализе изображений товарных позиций, присутствующих в сопроводительных документах. Приведено обоснование применения сверточных нейронных сетей для классификации изображений. Рассмотрены возможные подходы к построению специализированных нейросетевых классификаторов. Проведен сравнительный анализ эффективности подходов, основанных на дообучении существующих классификаторов (transfer learning) и на построении сверточных сетей, обученных только на размеченных данных выбранного товарного ассортимента. Исследованы вопросы получения обучающей выборки путем парсинга специализированных сайтов и получения элементов выборки с помощью систем искусственного интеллекта, специализирующихся на генерации изображений по запросу.
Классификатор, с-инс, классификационный код, искусственный интеллект, нейронные сети, преобразование матриц, стохастический градиентный спуск, визуальные признаки
Короткий адрес: https://sciup.org/14133448
IDR: 14133448