Production of a nanostructured bitumen modifier in the reprocessing of automobile tires

Автор: Marina P. Krasnovskikh, Sergei Yu. Chudinov, Natalia N. Sliusar, Konstantin G. Pugin, Yakov I. Vaisman

Журнал: Nanotechnologies in Construction: A Scientific Internet-Journal @nanobuild-en

Рубрика: Application of nanomaterials and nanotechnologies in construction

Статья в выпуске: 6 Vol.14, 2022 года.

Бесплатный доступ

Introduction. Polymer-bitumen binders are innovative nano-binders for asphalt concrete pavement. Introduction of a polymer modifier improves the characteristics of bitumen and asphalt concrete. The use of waste tires rubber for bitumen modification is considered to be an environmentally friendly solution, but it is limited due to the poor cosite of rubber with bitumen. Various methods based on activation of the rubber surface, dispersion of rubber to nanosized particles, and thermochemical transformations of rubber into individual organic compounds are known to overcome this limitation. Methods and materials. The method of joint pyrolysis of rubber with oxygen-containing oil under pressure is proposed to be used for converting it into a nanostructural bitumen modifier. The resulting product is studied by the methods of thermogravimetry, NMR-spectroscopy, chromatomasspectrometry, scanning electron microscopy and solubility in toluene. Results and discussion. It has been established that during joint pyrolysis rubber undergoes devulcanization, cracking and dispersion to nanosized particles, and as a result the product becomes compatible with bitumen. Thermochemical reprocessing of waste automobile tires can be considered to be a promising method for the production of a nanostructured bitumen modifier. Conclusion. The use of thermochemical pressure treatment of waste tire rubber in the presence of oxygen-containing oil makes it possible to obtain a nanostructured product compatible with bitumen for further use of the resulting modifier in the production of asphalt concrete.

Еще

Nanostructural modifier, bitumen, car tires

Короткий адрес: https://sciup.org/142235790

IDR: 142235790   |   DOI: 10.15828/2075-8545-2022-14-6-501-509

Список литературы Production of a nanostructured bitumen modifier in the reprocessing of automobile tires

  • Evdokimova N.G., Luneva N.N., Egorova N.A., Makhmutova A.R., Bayguzina Yu.A., Imangulova E.A. The selection of production technology of polymer-bitumen binders as an innovative nanobinders used in asphaltic concrete pavement. Nanotehnologii v stroitel’stve = Nanotechnologies in Construction. 2018; 10(5):20–37. https://doi.org/10.15828/2075-8545-2018-10-5-20-37 (In Russian)
  • Boev E.V., Islamutdinova A.A., Aminova E.K. Obtaining a fixer for waterproofing road bitumen. Nanotehnologii v stroitel’stve = Nanotechnologies in Construction. 2021; 13 (5):319–327. https://doi.org/10.15828/2075-8545-2021-13-5-319-327 (In Russian)
  • Czajczyńska D., Krzyżyńska R., Jouhara H., Spencer N. Use of pyrolytic gas from waste tire as a fuel: A review. Energy. 2017; 134: 1121–1131. https://doi.org/10.1016/j.energy.2017.05.042
  • Sienkiewicz M., Kucinska-Lipka J., Janik H., Balas A. Progress in used tyres management in the European Union: A review. Waste Management. 2012; 32(10): 1742–1751. https://doi.org/10.1016/j.wasman.2012.05.010
  • Hejna A., Korol J., Przybysz-Romatowska M., Zedler Ł., Chmielnicki B., Formela K. Waste tire rubber as low-cost and environmentally-friendly modifier in thermoset polymers – A review. Waste Management. 2020; 108: 106–118. https://doi.org/10.1016/j.wasman.2020.04.032
  • Li J., Chen Z., Xiao F., Amirkhanian S. N. Surface activation of scrap tire crumb rubber to improve compatibility of rubberized asphalt. Resources, Conservation and Recycling. 2021; 169: 105518. https://doi.org/10.1016/j.resconrec.2021.105518
  • Bressi S., Fiorentini N., Huang J., Losa M. Crumb Rubber Modifier in Road Asphalt Pavements: State of the Art and Statistics. Coatings. 2019; 9(6): 384. https://doi.org/10.3390/coatings9060384
  • López-Moro F. J., Moro M. C., Hernández-Olivares F., Witoszek-Schultz B., Alonso-Fernández M. Microscopic analysis of the interaction between crumb rubber and bitumen in asphalt mixtures using the dry process. Construction and Building Materials. 2013; 48: 691–699. https://doi.org/10.1016/j.conbuildmat.2013.07.041
  • Gordeeva I.V., Naumova Yu.A., Dudareva T.V., Krasotkina I.A., Nikol’skiy V.G. Composite modificator of asphalt-concrete obtained by the method of high-temperature shear-induced grinding of crumb rubber and SBS thermoelastoplast. Tonkie khimicheskie tekhnologii / Fine Chemical Technologies. 2018; 13(5): 38-48. https://doi.org/10.32362/2410-6593-2018-13-5-38-48 (In Russian)
  • Sokolov M.V., Nikolyukin M.M., Polyansky S.N. Increasing the degree of environmental safety of rubber industry enterprises. Journal of Mining Institute. 2022; 203: 233-236.
  • Tatneft and MOL start construction of a modified bitumen rubber plant at TANECO. Available from: https://neftegaz.ru/news/neftechim/687779-tatneft-i-mol-nachali-stroitelstvo-ustanovki-po-proizvodstvu-rezinomodifitsirovannogo-bituma-na-tane/
  • Phiri M.M., Phiri M.J., Formela K., Wang S., Hlangothi S.P. Grafting and reactive extrusion technologies for compatibilization of ground tire rubber composites: Compounding, properties, and applications. Journal of Cleaner Production. 2022; 369: 133084. https://doi.org/10.1016/j.jclepro.2022.133084
  • Zedler Ł., Klein M., Saeb M. R., Colom X., Cañavate J., Formela K. Synergistic Effects of Bitumen Plasticization and Microwave Treatment on Short-Term Devulcanization of Ground Tire Rubber. Polymers. 2018; 10(11): 1265. https://doi.org/10.3390/polym10111265
  • Archibong F. N., Sanusi O. M., Médéric P., Aït Hocine N. An overview on the recycling of waste ground tyre rubbers in thermoplastic matrices: Effect of added fillers. Resources, Conservation and Recycling. 2021; 175: 105894. https://doi.org/10.1016/j.resconrec.2021.105894
  • Simon-Stőger L., Varga C. PE-contaminated industrial waste ground tire rubber: How to transform a handicapped resource to a valuable one. Waste Management. 2021; 119: 111–121. https://doi.org/10.1016/j.wasman.2020.09.037
  • Aoudia K., Azem S., Aït Hocine N., Gratton M., Pettarin V., Seghar S. Recycling of waste tire rubber: Microwave devulcanization and incorporation in a thermoset resin. Waste Management. 2017; 60: 471–481. https://doi.org/10.1016/j.wasman.2016.10.051
  • Asaro L., Gratton M., Seghar S., Aït Hocine N. Recycling of rubber wastes by devulcanization. Resources, Conservation and Recycling. 2018; 133: 250–262. https://doi.org/10.1016/j.resconrec.2018.02.016
  • Ketov A., Korotaev V., Sliusar N., Bosnic V., Krasnovskikh M., Gorbunov A. Baseline Data of Low-Density Polyethylene Continuous Pyrolysis for Liquid Fuel Manufacture. Recycling. 2022; 7: 2. https://doi.org/10.3390/recycling7010002
  • Muruzina E.V. Evaluation of the compatibility of petroleum bitumen with thermoelastomers. Vestnik MGSU. 2010; 3: 63-68. (In Russian)
  • Helal E., Sherif El-Badawy, Alaa G., Zaki S.I. Evaluation of asphalt enhanced with locally made nanomaterials. Nanotehnologii v stroitel’stve = Nanotechnologies in Construction. 2016; 8(4): 42–67. https://doi.org/10.15828/2075-8545-2016-8-4-42-67
  • Li H., Jiang X., Cui H., Wang F., Zhang X., Yang L., Wang C. Investigation on the co-pyrolysis of waste rubber/plastics blended with a stalk additive. Journal of Analytical and Applied Pyrolysis. 2015; 115: 37–42. https://doi.org/10.1016/j.jaap.2015.07.004
  • Lu W., Guo Y., Zhang B. Co-deoxy-liquefaction of willow leaves and waste tires for high-caloric fuel production. Journal of Analytical and Applied Pyrolysis. 2018; 35: 327-339. https://doi.org/10.1016/j.jaap.2018.08.020
  • Wang Y., Dai L., Fan L., Duan D., Liu Y., Ruan R., Yu Z., Liu Y., Jiang, L. Microwave-assisted catalytic fast co-pyrolysis of bamboo sawdust and waste tire for bio-oil production. Journal of Analytical and Applied Pyrolysis. 2017; 123: 224–228. https://doi.org/10.1016/j.jaap.2016.11.025
  • Rolland A., Sarda A., Colomines G., Madec Y., Queffelec C., Farcas F., Chailleux E., Leroy E. Biobased bitumen analogue formation during hydrothermal treatment of microalgae residues, part 2: Influence of residence time on reaction products. Journal of Analytical and Applied Pyrolysis. 2020; 152: 104940. https://doi.org/10.1016/j.jaap.2020.104940
  • Ahmad N., Abnisa F., Wan Daud W. M. A. Synthesis of valuable intermediate products from natural rubber under supercritical alcohol conditions. Journal of Analytical and Applied Pyrolysis. 2019; 139: 196-204. https://doi.org/10.1016/j.jaap.2019.02.004
Еще
Статья научная