Прогнозирование показателей научно-технологического и инновационного развития региона при помощи рекуррентных нейронных сетей

Автор: Бывшев В.И., Королева С.А., Пантелеева И.А., Писарев И.В.

Журнал: Экономические и социальные перемены: факты, тенденции, прогноз @volnc-esc

Рубрика: Вопросы теории и методологии

Статья в выпуске: 3 т.17, 2024 года.

Бесплатный доступ

В статье осуществляется прогнозирование показателей научно-технологического и инновационного развития субъекта Российской Федерации и региональных институтов инновационного развития при помощи рекуррентных нейронных сетей. Прогнозирование при помощи нейронных сетей получило широкое распространение и является актуальным, качественным и достоверным способом осуществления экономических прогнозов, может применяться в рамках осуществления социально-экономического анализа, в том числе анализа территорий. Однако при изучении литературы не удалось найти работ, в которых прогнозирование научнотехнологического и инновационного развития регионов проводилось методом нейронных сетей, что определяет научную новизну исследования. Актуальность исследования обусловлена повышением внимания со стороны региональных властей к научно-технологическому и инновационному развитию территорий и необходимостью формирования государственных программ субъектов Российской Федерации в сфере научно-технологического развития, которое возникло вследствие осуществления попыток структурных сдвигов в экономике страны. Гипотеза исследования состоит в том, что прогнозирование показателей научно-технологического и инновационного развития региона и деятельности региональных институтов инновационного развития при помощи рекуррентных нейронных сетей даст более точные результаты, чем при использовании метода линейной регрессии, модели скользящего среднего или метода Хольта - Винтерса. В рамках статьи сформирована модель рекуррентной нейронной сети на основе системы взаимосвязей показателей научно-технологического и инновационного развития субъекта Российской Федерации и региональных институтов инновационного развития. В результате получен прогноз показателей научно-технологического и инновационного развития субъекта Российской Федерации и деятельности региональных институтов инновационного развития, который соотносится с реальной ситуацией в данной сфере.

Еще

Региональная научно-технологическая политика, институты инновационного развития, рекуррентные нейронные сети, прогнозирование, показатели научно-технологического развития, региональная экономика

Короткий адрес: https://sciup.org/147243900

IDR: 147243900   |   DOI: 10.15838/esc.2024.3.93.6

Список литературы Прогнозирование показателей научно-технологического и инновационного развития региона при помощи рекуррентных нейронных сетей

  • Аганбегян А.Г. (2019). Анализ и прогнозирование социально-экономического развития регионов (методические заметки) // Среднерусский вестник общественных наук. Т. 17. № 14. С. 15‒28. DOI: 10.22394/2071-2367-2019-14-4-15-28
  • Азарнова Т.В., Трещевский Ю.И., Папин С.Н. (2020). Прогнозирование параметров социально-экономического развития региона с использованием аппарата нейронных сетей (на примере ВРП Воронежской области) // Современная экономика: проблемы и решения. № 3 (123). С. 8–25. DOI: https://doi.org/10.17308/meps.2020.3/2321
  • Алтынер А., Бозкурт Э., Топчуоглу О. (2022). Влияние расходов на НИОКР на экспорт высокотехнологичной продукции // Экономические и социальные перемены: факты, тенденции, прогноз. Т. 15. № 5. С. 153–169. DOI: 10.15838/esc.2022.5.83.8.
  • Алферьев Д.А. (2018). Теоретико-методические аспекты долгосрочного прогнозирования научно-технологического развития // Управление инвестициями и инновациями. № 1. С. 5‒16. DOI: 10.14529/iimj180101
  • Басарева В.Г. (2019). Малые инновационные предприятия регионов: стратегические ориентиры и тактика их достижения // Регион: Экономика и Социология. № 2 (102). С. 224‒245. DOI: 10.15372/REG20190210
  • Беляков Г.П., Шумаков Ф.П. (2018). Особенности прогнозирования научно-технологического развития региона // Актуальные проблемы авиации и космонавтики. Т. 2. № 4(14). С. 773‒775.
  • Бывшев В.И. (2024). Формирование модели научно-технологической и инновационной политики в субъекте Российской Федерации // Журнал Сибирского федерального университета. Серия: Гуманитарные науки. Т. 17. № 1. С. 117‒136.
  • Васильева И.Н., Розова О.И., Корнеева Н.Д., Богатова Р.С. (2023). Эффективность государственной научно-технической политики в Российской Федерации: методика оценки и результаты ее апробации // Экономические и социальные перемены: факты, тенденции, прогноз. Т. 16. № 6. С. 155–173. DOI: 10.15838/esc.2023.6.90.9
  • Голова И.М. (2022). Научно-технический потенциал регионов как основа технологической независимости РФ // Экономика региона. Т. 18. № 4. С. 1062–1074. DOI: https://doi.org//10.17059/ekon.reg.2022-4-7
  • Дежина И.Г. (2021). «Выбор победителей» в современной научной политике России // Вопросы государственного и муниципального управления. № 3. С. 53‒74.
  • Егоров Н.Е., Ковров Г.С. (2023). Анализ методов рейтингования для оценки научно-технологического развития федеральных округов РФ // МИР (Модернизация. Инновации. Развитие). Т. 14. № 4. С. 698‒715. DOI: 10.18184/2079-4665.2023.14.4.698-715
  • Ендовицкий Д.А., Трещевский Ю.И., Канапухин П.А., Кособуцкая А.Ю. (2023). Эмпирический анализ и прогнозирование динамики инновационного развития регионов России // Вестник ВГУ. Серия: Экономика и управление. № 1. С. 51‒64. DOI: 10.17308/econ.2023.1/10932
  • Кетова К.В., Русяк И.Г., Вавилова Д.Д. (2020). Математическое моделирование и нейросетевое прогнозирование структуры и динамики человеческого капитала Российской Федерации // Вестник Том. гос. ун-та. Управление, вычислительная техника и информатика. № 53. С. 13–24. DOI: 10.17223/19988605/53/2
  • Китова О.В., Савинова В.М., Дьяконова Л.П., Бондаренко Ю.О. (2023). Прогнозирование показателей туризма в регионах с угольной добычей: анализ возможностей с использованием информационно-аналитической системы «Горизонт» // Уголь. № 11 (1173). С. 88‒95. DOI: 10.18796/0041-5790-2023-11-88-95
  • Комков Н.И., Цукерман В.А., Горячевская Е.С. (2019). Анализ основных факторов инновационного развития регионов Арктической зоны РФ // Проблемы прогнозирования. № 1 (172). С. 33‒40.
  • Кузнецова О.В. (2023). Рейтинг научно-технологического развития регионов: подходы, итоги, вызовы // Проблемы прогнозирования. № 4 (199). С. 94‒103. DOI: 10.47711/0868-6351-199-94-103
  • Мазилов Е.А., Устинова К.А., Давыдова А.А., Климова Ю.О., Ильин В.А. (2020). Формирование фондов поддержки научной, научно-технической и инновационной деятельности в регионах: состояние, задачи, механизмы реализации. Вологда: ФГБУН ВолНЦ РАН. 43 с.
  • Мыслякова Ю.Г. (2022). Индивидуализация стратегий научно-технологического развития экономики индустриальных регионов России с учетом наследственных детерминант // Journal of Applied Economic Research. Т. 21. № 4. С. 685–707. DOI: http://dx.doi.org/10.15826/vestnik.2022.21.4.024
  • Трифонов Ю.В., Сочков А.Л., Соловьев А.Е. (2021). Оценка экономического потенциала регионов РФ на основе методологии нейросетевого кластерного анализа // Вестник Нижегородского университета им. Н.И. Лобачевского. Серия: Социальные науки. № 3 (63). С. 38–47. DOI: 10.52452/18115942_2021_3_38
  • Федотов Д.В., Семенкин Е.С. (2014). О прогнозировании экономических показателей с помощью нейроэволюционных моделей // Сибирский аэрокосмический журнал. № 5 (57). C. 299‒304.
  • Шеломенцева В.П., Никитин Е.Б., Беспалый С.В., Ифутина Е.А. (2015). Использование метода «форсайт» для прогнозирования научно-технологического и экономического развития старопромышленного региона (на примере Павлодарской области республики Казахстан) // Вестник Омского университета. Серия «Экономика». № 4. С. 242‒248.
  • Широв А.А., Гусев М.С., Саяпова А.Р., Янтовский А.А. (2016). Научно-технологическая компонента макроструктурного прогноза // Проблемы прогнозирования. № 6 (159). С. 3–17.
  • Юйшань В. (2021). Инновационное развитие китайских регионов: опыт и рекомендации для России // МИР (Модернизация. Инновации. Развитие). Т. 12. № 2. С. 145‒159. DOI: https://doi.org/10.18184/2079-4665.2021.12.2.145-159
  • Babkin A.V., Karlina E.P., Epifanova N.S. (2015). Neural networks as a tool of forecasting of socioeconomic systems strategic development. Procedia-Social and Behavioral Sciences, 207, 274‒279.
  • Bengisu M., Nekhili R. (2006). Forecasting emerging technologies with the aid of science and technology databases. Technological Forecasting and Social Change, 73(7), 835‒844. DOI https://doi.org/10.1016/j.techfore.2005.09.001
  • Coates V., Farooque M., Klavans R. et al. (2001). On the future of technological forecasting. Technological Forecasting and Social Change, 67(1) ,1‒17. DOI https://doi.org/10.1016/S0040-1625(00)00122-0
  • Ghaith Z., Kulshreshtha S., Natcher D., Cameron B.T. (2021). Regional computable general equilibrium models: A review. Journal of Policy Modeling, 43(3), 710–724. DOI: https://doi.org/10.1016/j.jpolmod.2021.03.005
  • Jin N., Yang F., Mo Yu. et al. (2022). Highly accurate energy consumption forecasting model based on parallel LSTM neural networks. Advanced Engineering Informatics, 51, 101442. DOI: https://doi.org/10.1016/j.aei.2021.101442
  • Kitova O.V., Kolmakov I.B., Dyakonova L.P. et al. (2016). Hybrid intelligent system of forecasting of the socio-economic development of the country. International Journal of Applied Business and Economic Research, 14(9), 5755–5766.
  • Pazikadin A.R., Rifai D., Ali K. et al. (2020). Solar irradiance measurement instrumentation and power solar generation forecasting based on Artificial Neural Networks (ANN): A review of five years research trend. Science of The Total Environment, 715, 136848.
  • Qiu J., Wang B., Zhou C. (2019). Forecasting stock prices with long-short term memory neural network based on attention mechanism. PLoS ONE, 2.15(1): e0227222. DOI: https://doi.org/10.1371/journal.pone.0227222
  • Zhang Q., Abdullah A.R., Chong C.W., Ali M.H.A. (2022). Study on regional GDP forecasting analysis based on Radial Basis Function Neural Network with Genetic Algorithm (RBFNN-GA) for Shandong economy. Computational Intelligence and Neuroscience, 12. DOI: https://doi.org/10.1155/2022/8235308
Еще
Статья научная