Propagation Channel Modeling for Low-Altitude Platform Non-Terrestrial Networks from 275 GHz to 3 THz

Автор: Kok Yeow You

Журнал: International Journal of Wireless and Microwave Technologies @ijwmt

Статья в выпуске: 3 Vol.12, 2022 года.

Бесплатный доступ

One of the important studies in 6G aerial radio access networks is the propagation channel modeling. The high accurate propagation channel model will save cost and time, and is more effective in the design of the air radio access network system. However, existing channel models are limited to 1 THz, while 6G wireless technology is expected to operate up to 3 THz. In this paper, the propagation channel from 275 GHz to 3 THz is modeled by modifying the Friis equation, and each parameter in the model is described and analyzed analytically. The main factors that contribute to wireless signal attenuation at terahertz, such as atmospheric oxygen and water vapor, rainfall, and cloud factors, are also discussed in detail. Furthermore, the propagation channel calculation App for 6G low-altitude platform access networks application has been built using MATLAB GUI.

Еще

Aerial radio access networks, cloud attenuation, Friis equation, low-altitude platforms, path loss, propagation channel model, rain attenuation, TeraHertz, water vapour attenuation, International Telecommunication Union ITU

Короткий адрес: https://sciup.org/15018465

IDR: 15018465   |   DOI: 10.5815/ijwmt.2022.03.01

Список литературы Propagation Channel Modeling for Low-Altitude Platform Non-Terrestrial Networks from 275 GHz to 3 THz

  • Akyildiz, I. F., Kak, A., & Nie, S. (2020). 6G and beyond: The future of wireless communications systems. IEEE Access, 8, 133995–134030.
  • ITU. (2018). Sharing between the Radio Astronomy Service and Active Services in the Frequency Range 275-3000 GHz. International Telecommunication Union Radiocommunications Sector, ITU-R Report RA.2189-1.
  • Giordani, M., & Zorzi, M. (2021). Non-terrestrial networks in the 6G era: challenges and opportunities. IEEE Network, 35(2), 244–251.
  • Dao, N. N., Pham, Q. V., Tu, N. H., Thanh, T. T., Bao, V. N. Q., Lakew, D. S., & Cho, S. (2021). Survey on aerial radio access networks: Toward a comprehensive 6G access infrastructure. IEEE Communications Surveys & Tutorials, 23(2), 1193–1225.
  • Wang, A. H., Wang, P. S., Miao, X. Q., Li, X. M., Ye, N., & Liu, Y. (2020). A review on non-terrestrial wireless technologies for smart city internet of things. International Journal of Distributed Sensor Networks, 16(6), 1–17.
  • Friis, H. T. (1946). A note on a simple transmission formula. Proceedings of the IRE, 34(5), 254–256.
  • Attenuation Due to Clouds and Fog, International Telecommunication Union Radiocommunications Sector, Recommendation ITU-R P. 840-8, 2019.
  • ITU. (2005). Specific Attenuation Model for Rain for Use in Prediction Methods. International Telecommunication Union Radiocommunications Sector, Recommendation ITU-R P. 838-3.
  • Kim, I. I., Xu, S. H., & Samii, Y. R. (2013). Generalised correction to the Friis formula: quick determination of the coupling in the Fresnel region. IET Microwaves, Antennas & Propagation, 7(13), 1092–1101.
  • Liebe, H., Hufford, G., & Cotton, M. (1993, November). Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz. In Proceedings of AGARD (pp. 3-1–3-11). NASA.
  • ITU. (2019). Attenuation by atmospheric gases and related effects, International Telecommunication Union Radiocommunications Sector, Recommendation ITU-R P. 676-12.
  • ITU. (2008). Handbook: Radiowave Propagation Information for Designing Terrestrial Point-To-Points Links. Switzerland: International Telecommunication Union.
  • Zufferey, C. H. (1972). A study of rain effects on electromagnetic waves in the 1-600 GHz ranges. M.S. thesis, University Colorado, Boulder, U.S., 1972.
  • Fiorino, S., Bartell, R., Krizo, M. J., Caylor, G. L., Moore, K. P., Harris, T. R., & Cusumano, S. J. (2008, February). A first principles atmospheric propagation & characterization tool - The laser environmental effects definition and reference. In Proc. of SPIE Lasers and Applications in Science and Engineering (LASE) (pp. 1–12). SPIE.
  • ITU. (2017). Characteristics of precipitation for propagation modelling. International Telecommunication Union Radiocommunications Sector, Recommendation ITU-R P. 837-7.
  • Shayea, I., Rahman, T. A., Azmi, M. H., & Islam, MD. R. (2018). Real measurement study for rain attenuation conducted over 26 GHz microwave 5G link system in Malaysia. IEEE Access, 6, 19044–19064.
  • Siles, G. A., Riera, J. M., & García-del-Pino, P. (2015). Atmospheric attenuation in wireless communication systems at millimeter and THz frequencies. IEEE Antennas and Propagation Magazine, 57(1), 48–61.
  • Li, Q., Zhu, Q., Zheng, J. S., Liao, K. H., & Yang, G. S. (2014). Soil moisture response to rainfall in forestland and vegetable plot in Taihu Lake Basin, China. Chinese Geographical Science, 25(4), 1–12.
  • Liebe, H. J., Manabe, T., & Hufford, G. A. (1989). Millimeter-wave attenuation and delay rates due to fog/cloud conditions. IEEE Transactions on Antennas and Propagation, 37(12), 1617–1623.
  • Scheller, M., Jansen, C., & Koch, M. (2010). Application of effective medium theories in the Terahertz regime. In Recent Optical and Photonic Technologies (pp. 231–250). London: InTech.
  • Salonen, E., & Uppala, S. (1991). New prediction method of cloud attenuation. Electronics Letters, 27(12), 1106–1108.
  • Omotosho, T. V., Mandeep, J. S., & Abdullah, M. (2014). Cloud cover, cloud liquid water and cloud attenuation at Ka and V bands over equatorial climate. Meteorological Applications, 21, 777–785.
  • Zelsmann, H. R. (1995). Temperature dependence of the optical constants for liquid H2O and D2O in the far IR region. Journal of Molecular Structure, 350, 95-114.
  • Rϕnne, C., Thrane, L., Åstrand, P., Wallqvist, A., Mikkelsen, K. V., & Keiding, S. R. (1997). Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation. Journal of Chemical Physics, 107(14), 5319–5331.
  • Ellison, W. J. (2007). Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0 - 25 THz and the temperature range 0 - 100 oC. Journal Phys. Chem. Ref. Data, 36(1), 1–18.
  • Jonathan, J. H., & Wu, D. L. (2004). Ice and water permittivities for millimetre and sub-millimeter remote sensing applications. Atmospheric Science Letters, 5, 146–151.
  • Mätzler, C. (2006). Microwave dielectric properties of ice. In Thermal Microwave Radiation: Applications for Remote Sensing, Electromagn. Waves Ser., vol. 52 (pp. 455–462) U.K.: Inst. Eng. Technol.
  • Lutgens, F. K., Tarbuck, E. J., & Tasa, D. G. (2016). The Atmosphere: An Introduction to Meteorology 13th Ed. (pp. 21). London: Pearson.
  • Carey, L. D., Niu, J. G., Yang, P., Kankiewicz, J. A., Larson, V. E., & Haar, T. H. V. (2008). The vertical profile of liquid and ice water content in midlatitude mixed-phase altocumulus clouds. Journal of Applied Meteorology and Climatology, 47, 2487–2495.
  • Gultepe, I., & Isaac, G. A. (1997). Liquid water content and temperature relationship from aircraft observations and its applicability to GCMs. Journal of Climate, 10, 446–452.
  • Ho, C., Slobin, S., & Gritton, K. (2005). Atmospheric noise temperature induced by clouds and other weather phenomena at SHF band (1-45 GHz). Jet Propulsion Laboratory (JPL), California Institute of Technology, Pasadena, California, JPL D-32584.
  • Zhang, S., Kam, P. Y., Chen, J., & Yu, C. (2010). Bit-error rate performance of coherent optical M-ary PSK/QAM using decision-aided maximum likelihood phase estimation. Optics Express, 18(12), 12088–12103.
  • MATLAB R2020a. (2020). MATLAB App Building. U.S: MathWorks.
  • ITU. (2017). Reference standard atmospheres, International Telecommunication Union Radiocommunications Sector, ITU-R Report P. 835-6.
  • ITU. (2019). The radio refractive index: its formula and refractivity data, International Telecommunication Union Radiocommunications Sector, ITU-R Report P. 453-14.
  • Oyeleke, O. D., Thomas, S., Idowu-Bismark, O., Nzerem, P., & Muhammad, I. (2020). Absorption, diffraction and free space path losses modeling for the terahertz band. I. J. Engineering and Manufacturing, 1, 54–65.
Еще
Статья научная