Пропускная способность элементов станции метрополитена в зависимости от плотности людского потока

Автор: Сиваков И.А., Шабунина Д.Е., Чижиков В.П.

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 1 (110), 2024 года.

Бесплатный доступ

Объектом исследования являются турникеты и эскалаторы станций метрополитена. Целью работы является получение зависимости пропускной способности турникетов и эскалаторов от плотности людского потока и определение максимальных значений пропускной способности эскалаторов и турникетов в режиме эксплуатации станции.

Эскалатор, турникет, пропускная способность, экспериментальное исследование, метрополитен, пассажиропоток, плотность людского потока

Короткий адрес: https://sciup.org/143182725

IDR: 143182725   |   DOI: 10.4123/CUBS.110.1

Список литературы Пропускная способность элементов станции метрополитена в зависимости от плотности людского потока

  • Han, T., Zhao, J. and Li, W. (2020) Smart-Guided Pedestrian Emergency Evacuation in Slender-Shape Infrastructure with Digital Twin Simulations. Sustainability (Switzerland), 12. https://doi.org/10.3390/su12229701
  • Wang, L., Xue, X., Zhao, Z. and Wang, Z. (2018) The Impacts of Transportation Infrastructure on Sustainable Development: Emerging Trends and Challenges. International Journal of Environmental Research and Public Health, 15. https://doi.org/10.3390/ijerph15061172
  • Kalmykov, M., Korovyakovskiy, E., Polyakov, A. and Sholtysek, J. (2022) Development of Kupchino Intermodal Passenger Transport Hub. Proceedings of Petersburg Transport University, Petersburg State Transport University, 19, 56–67. https://doi.org/10.20295/1815-588X-2022-19-1-56-67
  • Gao, Y. and Zhu, J. (2022) Characteristics, Impacts and Trends of Urban Transportation. Encyclopedia, 2. https://doi.org/10.3390/encyclopedia2020078
  • Billones, R.K.C., Guillermo, M.A., Lucas, K.C., Era, M.D., Dadios, E.P. and Fillone, A.M. (2021) Smart Region Mobility Framework. Sustainability (Switzerland), 13. https://doi.org/10.3390/su13116366
  • Liang, X., Qin, H. and Xie, M. (2016) Simulation Study of Passenger Flow Characteristics in Subway Passage. DEStech Transactions on Computer Science and Engineering. https://doi.org/10.12783/dtcse/cmsam2016/3565
  • Xue, G., Gong, D., Zhang, J., Zhang, P. and Tai, Q. (2020) Passenger Travel Patterns and Behavior Analysis of Long-Term Staying in Subway System by Massive Smart Card Data. Energies, 13. https://doi.org/10.3390/en13102670
  • Qiao, R., Wu, Z., Gao, S., Jiang, Q., Liu, X., Huang, C., Xia, L. and Chen, M. (2023) Towards Inclusive Underground Public Transportation: Gender Differences on Thermal Comfort. Building and Environment, 242. https://doi.org/10.1016/j.buildenv.2023.110569
  • Peimbert, M. and Alcaraz, L.D. (2022) Where Environmental Microbiome Meets Its Host: Subway and Passenger Microbiome Relationships. Molecular Ecology. https://doi.org/10.1111/mec.16440
  • Wang, L., Chen, Y. and Wang, C. (2020) Research on Evolutionary Model of Urban Rail Transit Vulnerability Based on Computer Simulation. Neural Computing and Applications, 32. https://doi.org/10.1007/s00521-018-3793-6
  • Jia, F., Jiang, X., Li, H., Yu, X., Xu, X. and Jiang, M. (2021) Passenger-Oriented Subway Network Capacity Calculation and Analysis Based on Simulation. Transportation Letters, 13. https://doi.org/10.1080/19427867.2020.1741778
  • Zhang, B., Xu, Z.S., Zhao, Q.W. and Liu, Y.Y. (2014) A Study on Theoretical Calculation Method of Subway Safety Evacuation. Procedia Engineering, 71. https://doi.org/10.1016/j.proeng.2014.04.085
  • Piltan, F., Kim, C.H. and Kim, J.M. (2022) Influence of Fastener Failure on Dynamic Performance of Subway Vehicle. Applied Sciences (Switzerland), 12. https://doi.org/10.3390/app12136769
  • Zhang, S., Sunindijo, R.Y., Loosemore, M., Wang, S., Gu, Y. and Li, H. (2020) Identifying Critical Factors Influencing the Safety of Chinese Subway Construction Projects. Engineering, Construction and Architectural Management, 28. https://doi.org/10.1108/ECAM-07-2020-0525
  • Zhang, N., Liang, Y., Zhou, C., Niu, M. and Wan, F. (2022) Study on Fire Smoke Distribution and Safety Evacuation of Subway Station Based on BIM. Applied Sciences (Switzerland), 12. https://doi.org/10.3390/app122412808
  • Yan, W., Meng, X., Zhou, H., Yang, C., Chen, Q., Oh, S.J. and Cui, X. (2022) Recent Developments in Evaluation Methods and Characteristics of Comfort Environment in Underground Subway. Frontiers in Built Environment, 8. https://doi.org/10.3389/fbuil.2022.1033046
  • Marzouk, M. and Abdelaty, A. (2014) Monitoring Thermal Comfort in Subways Using Building Information Modeling. Energy and Buildings, 84. https://doi.org/10.1016/j.enbuild.2014.08.006
  • Kahali, D. and Rastogi, R. (2021) Comparative Analysis of Escalator Capacity at Metro Stations: Theory versus Practice. Transportation, 48. https://doi.org/10.1007/s11116-020-10160-6
  • Wang, Z., Pang, Y., Gan, M., Skitmore, M. and Li, F. (2022) Escalator Accident Mechanism Analysis and Injury Prediction Approaches in Heavy Capacity Metro Rail Transit Stations. Safety Science, 154. https://doi.org/10.1016/j.ssci.2022.105850
  • Gnendiger, C., Chraibi, M. and Tordeux, A. (2023) Come Together: A Unified Description of the Escalator Capacity. PLoS ONE, 18. https://doi.org/10.1371/journal.pone.0282599
  • Bardyshev, O., Popov, V. and Filin, A. (2018) On the Safety of Escalators in Subways. Bulletin IAELS, 3, 10–14. https://elibrary.ru/item.asp?id=36310024
  • Lee, J.M. (2022) Urban Design in Underground Public Spaces: Lessons from Moscow Metro. Journal of Asian Architecture and Building Engineering, 21. https://doi.org/10.1080/13467581.2021.1941978
  • Osipov, V., Zhukova, N., Subbotin, A., Glebovskiy, P. and Evnevich, E. (2022) Intelligent Escalator Passenger Safety Management. Scientific Reports, 12. https://doi.org/10.1038/s41598-022-09498-x
  • Lu, Y. (2022) Research on the Capacity of the Escalator in Subway Station. Advances in Transportation and Logistics, 1, 1–4. https://www.sandermanpub.com/uploads/20220719/4c714e8f679d1f5ddbaefbad20e23bdc.pdf
  • Bodendorf, H., Osterkamp, M., Seyfried, A. and Holl, S. (2014) Field Studies on the Capacity of Escalators. Transportation Research Procedia, 2, 213–218. https://doi.org/10.1016/j.trpro.2014.09.037
  • Ding, Y., Liu, X., Weng, F., Li, Q. and Li, W. (2021) Influences of Wing Gate Turnstiles’ Characteristics on Pedestrian Evacuation Based on Agent-Based Egress Model. Science Progress, 104. https://doi.org/10.1177/00368504211018058
  • Parfenenko, A. and Semenenko, E. (2022) Study of Turnstiles Capacity at Subway Stations. Natural and technical sciences, 168, 294–299. https://elibrary.ru/item.asp?id=48658662
  • Fathi-Kazerooni, S., Rojas-Cessa, R., Dong, Z. and Umpaichitra, V. (2021) Correlation of Subway Turnstile Entries and COVID-19 Incidence and Deaths in New York City. Infectious Disease Modelling, 6. https://doi.org/10.1016/j.idm.2020.11.006
  • Ovchinnikov, A., Krasnochub, E. and Bronstein, V. (2010) Processing of Experimental Data by the Least Squares Method. Bulletin of SGAU, 227–237. https://cyberleninka.ru/article/n/obrabotka-eksperimentalnyh-dannyh-metodom-naimenshih-kvadratov/viewer
  • Dembinski, H., Schmelling, M. and Waldi, R. (2019) Application of the Iterated Weighted Least-Squares Fit to Counting Experiments. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 940. https://doi.org/10.1016/j.nima.2019.05.086
  • Willberg, M., Zingerle, P. and Pail, R. (2020) Integration of Airborne Gravimetry Data Filtering into Residual Least-Squares Collocation: Example from the 1 Cm Geoid Experiment. Journal of Geodesy, 94. https://doi.org/10.1007/s00190-020-01396-2
Еще
Статья научная