Противораковые МРНК-вакцины на основе неоантигенов

Автор: Старостина Е.В., Низоленко Л.Ф., Карпенко Л.И., Ильичев А.А.

Журнал: Сибирский онкологический журнал @siboncoj

Рубрика: Обзоры

Статья в выпуске: 6 т.23, 2024 года.

Бесплатный доступ

Цель исследования - обобщение имеющихся данных о клинических испытаниях вакцин, основанных на мРНК, кодирующих неоантигены. материал и методы. Поиск опубликованных с января 2013 г. по май 2024 г. данных проводился на сайтах https://classic.clinicaltrials.gov и https://pubmed.ncbi.nlm.nih. gov/ по ключевым словам «neoantigen» и «vaccine», а затем отбиралась информация о препаратах на основе мРНК. Из 148 найденных исследований 54 было отобрано для написания систематического обзора.

Рак, иммунотерапия, мрнк-вакцины, неоантигены, клинические испытания, обзор

Короткий адрес: https://sciup.org/140308730

IDR: 140308730   |   DOI: 10.21294/1814-4861-2024-23-6-149-158

Список литературы Противораковые МРНК-вакцины на основе неоантигенов

  • Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71(3): 209-49. https://doi.org/10.3322/caac.21660.
  • Salama A.K., Moschos S.J. Next steps in immuno-oncology: enhancing antitumor effects through appropriate patient selection and rationally designed combination strategies. Ann Oncol. 2017; 28(1): 57-74. https://doi.org/10.1093/annonc/mdw534.
  • Deng Z., Tian Y., Song J., An G., Yang P. mRNA Vaccines: The Dawn of a New Era of Cancer Immunotherapy. Front Immunol. 2022; 13. https://doi.org/10.3389/fimmu.2022.887125.
  • Miao L., Zhang Y., Huang L. mRNA vaccine for cancer immunotherapy. Mol Cancer. 2021; 20(1): 41. https://doi.org/10.1186/s12943-021-01335-5.
  • Esprit A., de Mey W., Bahadur Shahi R., Thielemans K., Franceschini L., Breckpot K. Neo-Antigen mRNA Vaccines. Vaccines (Basel). 2020; 8(4): 776. https://doi.org/10.3390/vaccines8040776.
  • Borobova E.A., Antonets D.V., Starostina E.V., Karpenko L.I., Ilyichev A.A., Bazhan S.I. Design of Artificial Immunogens Containing Melanoma-associated T-cell Epitopes. Curr Gene Ther. 2018; 18(6): 375-85. https://doi.org/10.2174/1566523218666181113112829.
  • Suschak J.J., Williams J.A., Schmaljohn C.S. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum Vaccin Immunother. 2017; 13(12): 2837-48. https://doi.org/10.1080/21645515.2017.1330236.
  • Liu M.A. A Comparison of Plasmid DNA and mRNA as Vaccine Technologies. Vaccines (Basel). 2019; 7(2): 37. https://doi.org/10.3390/vaccines7020037.
  • Qin S., Tang X., Chen Y., Chen K., Fan N., Xiao W., Zheng Q., Li G., Teng Y., Wu M., Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther. 2022; 7(1): 166. https://doi.org/10.1038/s41392-022-01007-w.
  • Thess A., Grund S., Mui B.L., Hope M.J., Baumhof P., Fotin-Mleczek M., Schlake T. Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals. Mol Ther. 2015; 23(9): 1456-64. https://doi.org/10.1038/mt.2015.103.
  • Trepotec Z., Geiger J., Plank C., Aneja M.K., Rudolph C. Segmented poly(A) tails significantly reduce recombination of plasmid DNA without affecting mRNA translation efficiency or half-life. RNA. 2019; 25(4): 507-18. https://doi.org/10.1261/rna.069286.118.
  • Nelson J., Sorensen E.W., Mintri S., Rabideau A.E., Zheng W., Besin G., Khatwani N., Su S.V., Miracco E.J., Issa W.J., Hoge S., Stanton M.G., Joyal J.L. Impact of mRNA chemistry and manufacturing process on innate immune activation. Sci Adv. 2020; 6(26). https://doi.org/10.1126/sciadv.aaz6893.
  • Martinon F, Krishnan S., Lenzen G., Magne R., Gomard E., Guillet J.G., Levy J.P., Meulien P. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol. 1993; 23(7): 1719-22. https://doi.org/10.1002/eji.1830230749.
  • Conry R.M., LoBuglio A.F., Wright M., Sumerel L., Pike M.J., Johanning F., Benjamin R., Lu D., Curiel D.T. Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. 1995; 55(7):1397-400.
  • Mandl C.W., Aberle J.H., Aberle S.W., Holzmann H., Allison S.L., Heinz F.X. In vitro-synthesized infectious RNA as an attenuated live vaccine in a flavivirus model. Nat Med. 1998; 4(12): 1438-40. https://doi.org/10.1038/4031.
  • Zhou W.Z., Hoon D.S., Huang S.K., Fujii S., Hashimoto K., Morishita R., Kaneda Y. RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. Hum Gene Ther. 1999; 10(16): 2719-24. https://doi.org/10.1089/10430349950016762.
  • Kübler H., Scheel B., Gnad-Vogt U., Miller K., Schultze-Seemann W., vom Dorp F., Parmiani G., Hampel C., Wedel S., Trojan L., Jocham D., Maurer T., Rippin G., Fotin-Mleczek M., von der Mülbe F., Probst J., Hoerr I., Kallen K.J., Lander T., Stenzl A. Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study. J Immunother Cancer. 2015; 3: 26. https://doi.org/10.1186/s40425-015-0068-y.
  • Bialkowski L., van Weijnen A., van der Jeught K., Renmans D., Daszkiewicz L., Heirman C., Stange G., Breckpot K., Aerts J.L., Thielemans K. Intralymphatic mRNA vaccine induces CD8 T-cell responses that inhibit the growth of mucosally located tumours. Sci Rep. 2016; 6. https://doi.org/10.1038/srep22509.
  • Fan C., Qu H., Wang X., Sobhani N., Wang L., Liu S., Xiong W., Zeng Z., Li Y. Cancer/testis antigens: from serology to mRNA cancer vaccine. Semin Cancer Biol. 2021; 76: 218-31. https://doi.org/10.1016/j.semcancer.2021.04.016.
  • Deng Z., Yang H., Tian Y., Liu Z., Sun F., Yang P. An OX40L mRNA vaccine inhibits the growth of hepatocellular carcinoma. Front Oncol. 2022; 12. https://doi.org/10.3389/fonc.2022.975408.
  • Pietersz G.A., Tang C.K., Apostolopoulos V. Structure and design of polycationic carriers for gene delivery. Mini Rev Med Chem. 2006; 6(12): 1285-98. https://doi.org/10.2174/138955706778992987.
  • Hajj K.A., Whitehead K.A. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat Rev Mater. 2017; 2. https://doi.org/10.1038/natrevmats.2017.56.
  • Al Fayez N., Nassar M.S., Alshehri A.A., Alnefaie M.K., Almughem F.A., Alshehri B.Y., Alawad A.O., Tawfik E.A. Recent Advancement in mRNA Vaccine Development and Applications. Pharmaceutics. 2023; 15(7): 1972. https://doi.org/10.3390/pharmaceutics15071972.
  • Tan L., Zheng T., Li M., Zhong X., Tang Y., Qin M., Sun X. Optimization of an mRNA vaccine assisted with cyclodextrin-polyethyleneimine conjugates. Drug Deliv Transl Res. 2020; 10(3): 678-89. https://doi.org/10.1007/s13346-020-00725-4.
  • Maassen S.J., van der Schoot P., Cornelissen J.J.L.M. Experimental and Theoretical Determination of the pH inside the Confinement of a Virus-Like Particle. Small. 2018; 14(36). https://doi.org/10.1002/smll.201802081.
  • Scheel B., Aulwurm S., Probst J., Stitz L., Hoerr I., Rammensee H.G., Weller M., Pascolo S. Therapeutic anti-tumor immunity triggered by injections of immunostimulating single-stranded RNA. Eur J Immunol. 2006; 36(10): 2807-16. https://doi.org/10.1002/eji.200635910.
  • Papachristofilou A., Hipp M.M., Klinkhardt U., U., Früh M., Sebastian M., Weiss C., Pless M., Cathomas R., Hilbe W., Pall G., Wehler T., Alt J., Bischoff H., Geifiler M., Griesinger F, Kallen K.J., Fotin-Mleczek M., Schroder A., Scheel B., Muth A., Seibel T., Stosnach C., Doener F., Hong H.S., Koch S.D., Gnad-Vogt U., Zippelius A. Phase Ib evaluation of a self-adjuvanted protamine formulated mRNA-based active cancer immunotherapy, BI1361849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer. J Immunother Cancer. 2019; 7(1): 38. https://doi.org/10.1186/s40425-019-0520-5.
  • Reichmuth A.M., Oberli M.A., Jaklenec A., Langer R., Blankschtein D. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv. 2016; 7(5): 319-34. https://doi.org/10.4155/tde-2016-0006.
  • Hou X., Zaks T., Langer R., Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021; 6(12): 1078-94. https://doi.org/10.1038/s41578-021-00358-0.
  • Sahin U., Oehm P., Derhovanessian E., Jabulowsky R.A., Vormehr M., Gold M., Maurus D., Schwarck-Kokarakis D., Kuhn A.N., Omokoko T., Kranz L.M., Diken M., Kreiter S., Haas H., Attig S., Rae R., Cuk K., Kemmer-Bruck A., Breitkreuz A., Tolliver C., Caspar J., Quinkhardt J., Hebich L., Stein M., Hohberger A., Vogler I., Liebig I., Renken S., Sikorski J., Leierer M., Muller V., Mitzel-Rink H., Miederer M., Huber C., Grabbe S., Utikal J., Pinter A., Kaufmann R., Hassel J.C., Loquai C., TUreci O. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature. 2020; 585(7823): 107-12. https://doi.org/10.1038/s41586-020-2537-9.
  • Sebastian M., Schröder A., Scheel B., Hong H.S., Muth A., von Boehmer L., Zippelius A., Mayer F., Reck M., Atanackovic D., Thomas M., Schneller F, Stohlmacher J., Bernhard H., Groschel A., Lander T., Probst J., Strack T., Wiegand V., Gnad-Vogt U., Kallen K.J., Hoerr I., von der Muelbe F., Fotin-Mleczek M., Knuth A., Koch S.D. A phase I/IIa study of the mRNA-based cancer immunotherapy CV9201 in patients with stage IIIB/ IV non-small cell lung cancer. Cancer Immunol Immunother. 2019; 68(5): 799-812. https://doi.org/10.1007/s00262-019-02315-x.
  • Xie N., Shen G., Gao W., Huang Z., Huang C., Fu L. Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther. 2023; 8(1): 9. https://doi.org/10.1038/s41392-022-01270-x.
  • Leko V., Rosenberg S.A. Identifying and Targeting Human Tumor Antigens for T Cell-Based Immunotherapy of Solid Tumors. Cancer Cell. 2020; 38(4): 454-72. https://doi.org/10.1016/j.ccell.2020.07.013.
  • Hu Z., Ott P.A., Wu C.J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol. 2018; 18(3): 168-82. https://doi.org/10.1038/nri.2017.131.
  • Buonaguro L., Tagliamonte M. Selecting Target Antigens for Cancer Vaccine Development. Vaccines (Basel). 2020; 8(4): 615. https://doi.org/10.3390/vaccines8040615.
  • Sahin U., Tureci O. Personalized vaccines for cancer immunotherapy. Science. 2018; 359 (6382): 1355-60. https://doi.org/10.1126/science.aar7112.
  • Schumacher T.N., Schreiber R.D. Neoantigens in cancer immunotherapy. Science. 2015; 348 (6230): 69-74. https://doi.org/10.1126/science.aaa4971.
  • Zhao W., Wu J., Chen S., Zhou Z. Shared neoantigens: ideal targets for off-the-shelf cancer immunotherapy. Pharmacogenomics. 2020; 21(9): 637-45. https://doi.org/10.2217/pgs-2019-0184.
  • Klebanoff C.A., Wolchok J.D. Shared cancer neoantigens: Making private matters public. J Exp Med. 2018; 215(1): 5-7. https://doi.org/10.1084/jem.20172188.
  • Türeci Ö., Löwer M., Schrörs B., Lang M., Tadmor A., Sahin U. Challenges towards the realization of individualized cancer vaccines. Nat Biomed Eng. 2018; 2(8): 566-69. https://doi.org/10.1038/s41551-018-0266-2.
  • Blass E., Ott P.A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol. 2021; 18(4): 215-29. https://doi.org/10.1038/s41571-020-00460-2.
  • Zhang Z., Lu M., Qin Y., Gao W., Tao L., Su W., Zhong J. Neoantigen: A New Breakthrough in Tumor Immunotherapy. Front Immunol. 2021; 12. https://doi.org/10.3389/fimmu.2021.672356.
  • Zhao X., Pan X., Wang Y., Zhang Y. Targeting neoantigens for cancer immunotherapy. Biomark Res. 2021; 9(1): 61. https://doi.org/10.1186/s40364-021-00315-7.
  • Zhou W., Yu J., Li Y., Wang K. Neoantigen-specific TCR-T cell-based immunotherapy for acute myeloid leukemia. Exp Hematol Oncol. 2022; 11(1): 100. https://doi.org/10.1186/s40164-022-00353-3.
  • Zhao J., Liao B., Gong L., Yang H., Li S., Li Y. Knowledge mapping of therapeutic cancer vaccine from 2013 to 2022: A bibliometric and visual analysis. Hum Vaccin Immunother. 2023; 19(2). https://doi.org/10.1080/21645515.2023.2254262.
  • ClinicalTrials.gov [Internet]. URL: https://www.clinicaltrials.gov [cited 31.05.2024].
  • Sahin U., Derhovanessian E., Miller M., Kloke B.P., Simon P., Lower M., Bukur V., Tadmor A.D., Luxemburger U., Schrörs B., Omokoko T., Vormehr M., Albrecht C., Paruzynski A., Kuhn A.N., Buck J., Heesch S., Schreeb K.H., Müller F., Ortseifer I., Vogler I., Godehardt E., Attig S., Rae R., Breitkreuz A., Tolliver C., Suchan M., Martic G., HohbergerA., SornP., Diekmann J., Ciesla J., Waksmann O., Bruck A.K., Witt M., Zillgen M., Rothermel A., Kasemann B., Langer D., Bolte S., Diken M., Kreiter S., Nemecek R., Gebhardt C., Grabbe S., Höller C., Utikal J., Huber C., Loquai C., Türeci O. Personalized RNA mutanome vaccines mobilize polyspecific therapeutic immunity against cancer. Nature. 2017; 547(7662): 222-26. https://doi.org/10.1038/nature23003.
  • Schmidt M., Vogler I., Derhovanessian E., Omokoko T., GodehardtE., Attig S., Cortini A., Newrzela S., Grützner J., Bolte S., Langer D., Eichbaum M., Lindman H., Pascolo S., Schneeweiss A., Sjöblom T., Türeci Ö., Sahin U. T-cell responses induced by an individualized neoantigen specific immune therapy in post (neo)adjuvant patients with triple negative breast cancer. Ann. Oncol. 2020; 31(s4): 276. https://doi.org/10.1016/j.annonc.2020.08.209.
  • Yarchoan M., Hopkins A., Jaffee E.M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N Engl J Med. 2017; 377(25): 2500-01. https://doi.org/10.1056/NEJMc1713444.
  • Rojas L.A., Sethna Z., Soares K.C., Olcese C., Pang N., Patterson E., Lihm J., Ceglia N., Guasp P., Chu A., Yu R., Chandra A.K., Waters T., Ruan J., Amisaki M., Zebboudj A., Odgerel Z., Payne G., Derhovanessian E., Muller F, Rhee I., YadavM., Dobrin A., SadelainM., LukszaM., Cohen N., Tang L., Basturk O., Gonen M., Katz S., Do R.K., Epstein A.S., Momtaz P., Park W., Sugarman R., Varghese A.M., Won E., Desai A., Wei A.C., D'Angelica M.I., Kingham T.P., Mellman I., Merghoub T., Wolchok J.D., Sahin U., Türeci Ö., Greenbaum B.D., Jarnagin W.R., Drebin J., O'Reilly E.M., Balachandran V.P. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature. 2023; 618(7963): 144-50. https://doi.org/10.1038/s41586-023-06063-y.
  • CT025 - Personalized RNA neoantigen vaccines induce long-lived CD8+ T effector cells in pancreatic cancer. [Internet]. URL: https://www.abstractsonline.com/pp8/#!/20272/presentation/11403 [cited 31.05.2024].
  • Weber J.S., Carlino M.S., Khattak A., Meniawy T., Ansstas G., Taylor M.H., Kim K.B., McKean M., Long G.V., Sullivan R.J., Faries M., Tran T.T., Cowey C.L., Pecora A., Shaheen M., Segar J., Medina T., Atkinson V., Gibney G.T., Luke J.J., Thomas S., Buchbinder E.I., Healy J.A., Huang M., Morrissey M., Feldman I., Sehgal V., Robert-Tissot C., Hou P., Zhu L., Brown M., Aanur P., Meehan R.S., Zaks T. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet. 2024; 403(10427): 632-44. https://doi.org/10.1016/S0140-6736(23)02268-7.
  • Moderna and Merck Announce mRNA-4157 (V940) In Combination with Keytruda(R) (Pembrolizumab) Demonstrated Continued Improvement in Recurrence-Free Survival and Distant Metastasis-Free Survival in Patients with High-Risk Stage III/IV Melanoma Following Complete Resection Versus Keytruda at Three Years. 2023. [Internet]. URL: https://inlnk.ru/9P9nlY [cited 31.05.2024].
  • Ni L. Advances in mRNA-Based Cancer Vaccines. Vaccines (Basel). 2023; 11(10): 1599. https://doi.org/10.3390/vaccines11101599.
Еще
Статья обзорная