PsbS Dependence in Lipid and Pigment Composition in Rice Plants

Автор: Pashayeva A.

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Биологические науки

Статья в выпуске: 9 т.7, 2021 года.

Бесплатный доступ

Plants acclimate to fluctuations in light conditions by adjusting their photosynthetic apparatus. When the light intensity exceeds, an unbalanced excitation of the two photosystems occurs. It results in reduced photosynthetic efficiency. Photosystem II (PSII) is the most susceptible and dynamically regulated part of the light reactions in the thylakoid membrane. Non-photochemical quenching of chlorophyll fluorescence (NPQ) is one of the short-term photoprotective mechanisms, which consist of the number of components. The strongest NPQ component — qE is localized in the PSII antenna and induced in plants by lumen acidification, the activation of the pH sensor PsbS, and the conversion of the violaxanthin to zeaxanthin within the xanthophyll cycle. Here, I present data that characterizes the role of the PsbS protein in organization of PSII structural components in isolated PSII-enriched membranes. The preparations were isolated from wild-type (WT) and PsbS-less (PsbS-KO) mutant rice plant. Based on the obtained results, the PSII-enriched membranes from WT and PsbS-KO differ as in the level of lipids, also in carotenoids. I conclude that the PsbS-dependent changes in membrane fluidity in PsbS-KO mutant plants compensated with increased lipid level in mutant plants.

Еще

Carotenoids, lipids, non-photochemical quenching, photosystem II, PsbS, rice, thylakoid membrane

Короткий адрес: https://sciup.org/14119595

IDR: 14119595   |   DOI: 10.33619/2414-2948/70/05

Список литературы PsbS Dependence in Lipid and Pigment Composition in Rice Plants

  • Aliyeva, D. R., Aydinli, L. M., Pashayeva, A. N., Zulfugarov, I. S., & Huseynova, I. M. (2020). Photosynthetic machinery and antioxidant status of wheat genotypes under drought stress followed by rewatering. Photosynthetica, 58(5), 1217 1225. https://doi.org/10.32615/ps.2020.074
  • Zulfugarov, I. S., Tovuu, A., Kim, J. H., & Lee, C. H. (2011). Detection of Reactive Oxygen Species in Higher Plants. Journal of Plant Biology, 54(6), 351 357. https://doi.org/10.1007/s12374 011 9177 4
  • Eberhard, S., Finazzi, G. & Wollman, F.A. (2008) The dynamics of photosynthesis. Annual Review of Genetics 42, 463 515. https://doi.org/10.1146/annurev.genet.42.110807.091452
  • Kimura, M., Yamamoto, Y. Y., Seki, M., Sakurai, T., Sato, M., Abe, T., Yoshida, S., Manabe, K., Shinozaki, K. & Matsui, M. (2003) Iden tification of Arabidopsis genes regulated by high light stress using cDNA microarray. Photochemistry and Photobiology 77, 226 233. https://doi.org/10.1562/0031 8655(2003)0770226IOAGRB2.0.CO2
  • Rutitzky, M., Ghiglione, H. O., Curá, J. A., Casal, J. J., & Yanovsky, M. J. (2009). Comparative genomic analysis of light regulated transcripts in the Solanaceae. BMC genomics, 10(1), 1 14. https://doi.org/10.1186/1471 2164 10 60
  • Pashayeva, A., Wu, G., Huseynova, I., Lee, C. H., & Zulfugarov, I. S. (2021). Role of Thylakoid Protein Phosphorylation in Energy Dependent Quenching of Chlorophyll Fluorescence in Rice Plants. International journal of molecular sciences, 22(15), 7978. https://doi.org/10.3390/ijms22157978
  • Liu, X., Ma, D., Zhang, Z., Wang, S., Du, S., Deng, X., & Yin, L. (2019). Plant lipid remodeling in response to abiotic stresses. Environmental and Experimental Botany, 165(June), 174 184. https://doi.org/10.1016/j.envexpbot.2019.06.005
  • Seiwert, D., Witt, H., Ritz, S., Janshoff, A., & Paulsen, H. (2018). The Nonbilayer Lipid MGDG and the Major Light Harvesting Complex (LHCII) Promote Membrane Stacking in Supported Lipid Bilayers. Biochemistry, 57(15), 2278 2288. https://doi.org/10.1021/acs.biochem.8b00118
  • Dlouhý, O., Kurasová, I., Karlický, V., Javornik, U., Šket, P., Petrova, N. Z., Krumova, S. B., Plavec, J., Ughy, B., Špunda, V., & Garab, G. (2020). Modulation of non bilayer lipid phases and the structure and functions of thylakoid membranes: effects on the water soluble enzyme violaxanthin de epoxidase. Scientific Reports, 10(1), 1 14. https://doi.org/10.1038/s41598 02068854 x
  • Yu, L., Fan, J., Zhou, C., & Xu, C. (2021). Chloroplast lipid biosynthesis is fine tuned to thylakoid membrane remodeling during light acclimation. Plant Physiology, 185(1), 94 107. https://doi.org/10.1093/plphys/kiaa013
  • Nami, F., Tian, L., Huber, M., Croce, R., & Pandit, A. (2021). Lipid and protein dynamics of stacked and cation depletion induced unstacked thylakoid membranes. BBA Advances, June, 100015. https://doi.org/10.1016/j.bbadva.2021.100015
  • Tovuu, A., Zulfugarov, I. S., Wu, G., Kang, I. S., Kim, C., Moon, B. Y., An, G., & Lee, C. H. (2016). Rice mutants deficient in ω 3 fatty acid desaturase (FAD8) fail to acclimate to cold temperatures. Plant Physiology and Biochemistry, 109, 525 535. https://doi.org/10.1016/j.plaphy.2016.11.001
  • Yang, C., Boggasch, S., Haase, W., & Paulsen, H. (2006). Thermal stability of trimeric light harvesting chlorophyll a/b complex (LHCIIb) in liposomes of thylakoid lipids. Biochimica et Biophysica Acta Bioenergetics, 1757(12), 1642 1648. https://doi.org/10.1016/j.bbabio.2006.08.010
  • Van Eerden, F. J., Melo, M. N., Frederix, P. W. J. M., & Marrink, S. J. (2017). Prediction of Thylakoid Lipid Binding Sites on Photosystem II. Biophysical Journal, 113(12), 2669 2681. https://doi.org/10.1016/j.bpj.2017.09.039
  • Sattari Vayghan, H., Tavalaei, S., Grillon, A., Meyer, L., Ballabani, G., Glauser, G., & Longoni, P. (2020). Growth Temperature Influence on Lipids and Photosynthesis in Lepidium sativum. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00745
  • Bykowski, M., Mazur, R., Wójtowicz, J., Suski, S., Garstka, M., Mostowska, A., & Kowalewska, Ł. (2021). Too rigid to fold: Carotenoid dependent decrease in thylakoid fluidity hampers the formation of chloroplast grana. Plant Physiology, 185(1), 210 227. https://doi.org/10.1093/plphys/kiaa009
  • Külheim, C., Ågren, J., & Jansson, S. (2002). Rapid regulation of light harvesting and plant fitness in the field. Science, 297(5578), 91 93. https://doi.org/10.1126/science.1072359
  • Li, X. P., Müller Moulé, P., Gilmore, A. M., & Niyogi, K. K. (2002). PsbS dependent enhancement of feedback de excitation protects photosystem II from photoinhibition. Proceedings of the National Academy of Sciences, 99(23), 15222 15227. https://doi.org/10.1073/pnas.232447699
  • Johansson Jänkänpää, H., Frenkel, M., Zulfugarov, I., Reichelt, M., Krieger Liszkay, A., Mishra, Y., Gershenzon, J., Moen, J., Lee, C. H., & Jansson, S. (2013). Non Photochemical Quenching Capacity in Arabidopsis thaliana Affects Herbivore Behaviour. PLoS ONE, 8(1). https://doi.org/10.1371/journal.pone.0053232
  • Unal, D., García Caparrós, P., Kumar, V., & Dietz, K. J. (2020). Chloroplast associated molecular patterns as concept for fine tuned operational retrograde signalling. Philosophical Transactions of the Royal Society B, 375(1801), 20190443. https://doi.org/10.1098/rstb.2019.0443
  • Zulfugarov, I.S., Tovuu, A., Dogsom, B., Lee, C.Y. and Lee, C.H. (2010). PsbS specific zeaxanthin independent changes in fluorescence emission spectrum as a signature of energy dependent non photochemical quenching in higher plants. Photochemical & Photobiological Sciences, 9(5), pp.697 703. https://doi.org/10.1039/B9PP00132H
  • Tibiletti, T., Auroy, P., Peltier, G., & Caffarri, S. (2016). Chlamydomonas reinhardtii PsbS protein is functional and accumulates rapidly and transiently under high light. Plant Physiology, 171(4), 2717 2730. https://doi.org/10.1104/pp.16.00572
  • Tu, W., Wu, L., Zhang, C., Sun, R., Wang, L., Yang, W., Yang, C., & Liu, C. (2020). Neoxanthin affects the stability of the C2S2M2 type photosystem II supercomplexes and the kinetics of state transition in Arabidopsis. Plant Journal, 104(6), 1724 1735. https://doi.org/10.1111/tpj.15033
  • Wang, K., Tu, W., Liu, C., Rao, Y., Gao, Z., & Yang, C. (2017). 9 cis Neoxanthin in light harvesting complexes of photosystem II regulates the binding of violaxanthin and xanthophyll cycle. Plant physiology, 174(1), 86 96. https://doi.org/10.1104/pp.17.00029
  • Haferkamp, S., Haase, W., Pascal, A. A., Van Amerongen, H., & Kirchhoff, H. (2010). Efficient light harvesting by photosystem II requires an optimized protein packing density in grana thylakoids. Journal of Biological Chemistry, 285(22), 17020 17028. https://doi.org/10.1074/jbc.M109.077750
  • Cupellini, L., Calvani, D., Jacquemin, D., & Mennucci, B. (2020). Charge transfer from the carotenoid can quench chlorophyll excitation in antenna complexes of plants. Nature Communications, 11(1). https://doi.org/10.1038/s41467 020 14488 6
  • Rodin, R. V. (2021). Obrazovanie lipidov v kletke mikrovodorosli Chlorella vulgaris. Alleja Nauki, 2(53), 20 24. (in Russian).
  • Goral, T. K., Johnson, M. P., Duffy, C. D., Brain, A. P., Ruban, A. V. & Mullineaux, C. W., (2012). Light‐harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. The Plant Journal, 69(2), 289 301. https://doi.org/10.1111/j.1365 313X.2011.04790.x
  • Tovuu, A., Zulfugarov, I. S., & Lee, C. H. (2013). Correlations between the temperature dependence of chlorophyll fluorescence and the fluidity of thylakoid membranes. Physiologia plantarum, 147(4), 409 416. https://doi.org/10.1111/j.1399 3054.2012.01700.x
  • Li, F., Liu, C., Streckaite, S., Yang, C., Xu, P., Llansola Portoles, M. J., Ilioaia, C., Pascal, A. A., Croce, R. & Robert, B. (2021). A new, unquenched intermediate of LHCII. Journal of Biological Chemistry, 296. https://doi.org/10.1016/j.jbc.2021.100322
  • Ford, R. C., & Evans, M. C. W. (1983). Isolation of a photosystem 2 preparation from higher plants with highly enriched oxygen evolution activity. FEBS letters, 160(1 2), 159 164. https://doi.org/10.1016/0014 5793(83)80957 0
  • Zulfugarov, I. S., Tovuu, A., Eu, Y. J., Dogsom, B., Poudyal, R. S., Nath, K., Hall, M., Banerjee, M., Yoon, U. C., Moon, Y. H., An, G., Jansson, S., & Lee, C. H. (2014). Production of superoxide from Photosystem II in a rice (Oryza sativa L.) mutant lacking PsbS. BMC Plant Biology, 14(1), 1 15. https://doi.org/10.1186/s12870 014 0242 2
  • Zulfugarov, I. S., Ham, O. K., Mishra, S. R., Kim, J. Y., Nath, K., Koo, H. Y., Kim, H. S., Moon, Y. H., An, G., & Lee, C. H. (2007). Dependence of reaction center type energy dependent quenching on photosystem II antenna size. Biochimica et Biophysica Acta Bioenergetics, 1767(6), 773 780. https://doi.org/10.1016/j.bbabio.2007.02.021
Еще
Статья научная