Quadrilateral finite element for thin and thick plates

Автор: Tyukalov Yury Yakovlevich

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 5 (98), 2021 года.

Бесплатный доступ

The object of research is quadrilateral finite element based on linear approximations of moments for calculations thin and thick plates. Method. The additional energy functional, the virtual displacements principle and the moments approximations allows us to get analytically all necessary expressions of matrices elements. Using the virtual displacements principle, it is constructed the equilibrium equations, which are added to the additional energy functional. Results. The proposed method gives satisfactory results converging towards the reference solution as for the thin as thick plates. The locking effect for the thin plates is absent. It had been demonstrated the proposed finite element isn’t sensitive to the form distortions. The proposed method allows to calculate stiffness matrix of the finite element and to use it in the finite element method softs based on displacements approximations.

Еще

Finite element method, plate, linear approximation, virtual displacements

Короткий адрес: https://sciup.org/143178328

IDR: 143178328   |   DOI: 10.4123/CUBS.98.2

Список литературы Quadrilateral finite element for thin and thick plates

  • Do, T. Van, Kien, D., Dinh, N., Hong, D., Quoc, T. Thin-Walled Structures Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory. Thin-Walled Structures. 2017. 119(July). Pp. 687–699. DOI: 10.1016/j.tws.2017.07.022.
  • Karttunen, A.T., Hertzen, R. Von, Reddy, J.N., Romanoff, J. Shear deformable plate elements based on exact elasticity solution. Computers and Structures. 2018. 200. Pp. 21–31. DOI: 10.1016/j.compstruc.2018.02.006.
  • Katili, I., Batoz, J., Jauhari, I., Hamdouni, A. The development of DKMQ plate bending element for thick to thin shell analysis based on the Naghdi / Reissner / Mindlin shell theory. Finite Elements in Analysis and Design. 2015. 100. Pp. 12–27. DOI: 10.1016/j.finel.2015.02.005.
  • Mulcahy, N.L., Mcguckin, D.G. The addition of transverse shear flexibility to triangular thin plate elements. Finite Elements in Analysis and Design. 2012. 52. Pp. 23–30. DOI: 10.1016/j.finel.2011.12.005.
  • Problem, R.P. Continuous finite element methods for Reissner-Mindlin plate problem. Acta Mathematica Scientia, Series B. 2018. 38(2). Pp. 450–470. DOI: 10.1016/S0252-9602(18)30760-4.
  • Thai, H., Choi, D. Finite element formulation of various four unknown shear deformation theories for functionally graded plates. Finite Elements in Analysis and Design. 2013. 75. Pp. 50–61. DOI: 10.1016/j.finel.2013.07.003.
  • Thai, C.H., Zenkour, A.M., Wahab, M.A., Nguyen-xuan, H. A simple four-unknown shear and normal deformations theory for functionally graded isotropic and sandwich plates based on isogeometric analysis. Composite structure. 2016. 139. Pp. 77–95. DOI: 10.1016/j.compstruct.2015.11.066.
  • Yin, S., Hale, J.S., Yu, T., Quoc, T., Bordas, S.P.A. Isogeometric locking-free plate element : A simple first order shear deformation theory for functionally graded plates. Composite Structures. 2014. 118. Pp. 121–138. DOI: 10.1016/j.compstruct.2014.07.028.
  • Nguyen, V., Do, V., Lee, C. Bending analyses of FG-CNTRC plates using the modified mesh-free radial point interpolation method based on the higher-order shear deformation theory. Composite Structures. 2017. 168. Pp. 485–497. DOI: 10.1016/j.compstruct.2017.02.055.
  • Khezri, M., Gharib, M., Rasmussen, K.J.R. Thin-Walled Structures A uni fi ed approach to meshless analysis of thin to moderately thick plates based on a shear-locking-free Mindlin theory formulation. Thin-Walled Structures. 2018. 124(June 2017). Pp. 161–179. DOI: 10.1016/j.tws.2017.12.004.
  • Cho, J.R. Natural element approximation of hierarchical models of plate-like elastic structures. Finite Elements in Analysis and Design. 2020. 180(September). Pp. 103439. DOI: 10.1016/j.finel.2020.103439.
  • Fallah, N. On the use of shape functions in the cell centered finite volume formulation for plate bending analysis based on Mindlin-Reissner plate theory. Computers and Structures. 2006. 84(26–27). Pp. 1664–1672. DOI: 10.1016/j.compstruc.2006.04.004.
  • Videla, J., Natarajan, S., Bordas, S.P.A. A new locking-free polygonal plate element for thin and thick plates based on Reissner-Mindlin plate theory and assumed shear strain fields. Computers and Structures. 2019. 220. Pp. 32–42. DOI: 10.1016/j.compstruc.2019.04.009.
  • Senjanović, I., Vladimir, N., Hadžić, N. Modified Mindlin plate theory and shear locking-free finite element formulation. Mechanics Research Communications. 2014. 55. Pp. 95–104. DOI: 10.1016/j.mechrescom.2013.10.007.
  • Abdikarimov, R., Usarov, D., Khamidov, S., Koraboshev, O., Nasirov, I., Nosirov, A. Free oscillations of three-layered plates. IOP Conference Series: Materials Science and Engineering. 2020. 883(1). DOI: 10.1088/1757-899X/883/1/012058.
  • Yakubovskiy, Y., Kolosov, V. Physically Nonlinear Bending of Composite Plates. Lectures Notes in Civil Engineering. 2020. 70. Pp. 307–318.
  • Tyukalov, Y.Y. Calculation of circular plates with assuming shear deformations. IOP Conference Series: Materials Science and Engineering. 2019. 687(3). DOI: 10.1088/1757-899X/687/3/033004.
  • Tyukalov, Y.Y. Equilibrium finite elements for plane problems of the elasticity theory. Magazine of Civil Engineering. 2019. 91(7). Pp. 80–97. DOI: 10.18720/MCE.91.8.
  • Tyukalov, Y.Y. Calculation of the circular plates’ stability in stresses. IOP Conference Series: Materials Science and Engineering. 2020. 962. DOI: 10.1088/1757-899X/962/2/022041.
  • Tyukalov, Y.Y. Method of plates stability analysis based on the moments approximations. Magazine of Civil Engineering. 2020. 95(3). Pp. 90–103. DOI: 10.18720/MCE.95.9.
  • Tyukalov, Y.Y. Calculation of bending plates by finite element method in stresses. IOP Conference Series: Materials Science and Engineering. 2018. 451(1). DOI: 10.1088/1757-899X/451/1/012046.
  • Park, M., Choi, D. A two-variable first-order shear deformation theory considering in-plane rotation for bending, buckling and free vibration analyses of isotropic plates. Applied Mathematical Modelling. 2018. 61. Pp. 49–71. DOI: 10.1016/j.apm.2018.03.036.
  • Donnell, L. Beams, plates, and shells. McGraw-Hill, 1976. 453 p.
Еще
Статья научная