Quality inspection of fertilizer granules using computer vision – a review

Автор: Ndukwe I.K., Yunovidov D., Bahrami M.R., Mazzara M., Olugbade T.O.

Журнал: Компьютерная оптика @computer-optics

Рубрика: Обработка изображений, распознавание образов

Статья в выпуске: 1 т.49, 2025 года.

Бесплатный доступ

This research explores the fusion of computer vision and agricultural quality control. It investigates the efficacy of computer vision algorithms, particularly in image classification and object detection, for non-destructive assessment. These algorithms offer objective, rapid, and error-resistant analysis compared to human inspection. The study provides an extensive overview of using computer vision to evaluate grain and fertilizer granule quality, highlighting granule size’s significance. It assesses prevailing object detection methods, outlining their advantages and drawbacks. The paper identifies the prevailing trend of framing quality inspection as an image classification challenge and suggests future research directions. These involve exploring object detection, image segmentation, or hybrid models to enhance fertilizer granule quality assessment.

Еще

Quality control, computer vision, machine vision, machine learning, grains, fertilizer granules

Короткий адрес: https://sciup.org/140310445

IDR: 140310445   |   DOI: 10.18287/2412-6179-CO-1458

Статья научная