Racial Bias in Facial Expression Recognition Datasets: Evaluating the Impact on Model Performance
Автор: Ridwan O. Bello, Joseph D. Akinyemi, Khadijat T. Ladoja, Oladeji P. Akomolafe
Журнал: International Journal of Engineering and Manufacturing @ijem
Статья в выпуске: 1 vol.15, 2025 года.
Бесплатный доступ
Despite extensive research efforts in Facial Expression Recognition (FER), achieving consistent performance across diverse datasets remains challenging. This challenge stems from variations in imaging conditions such as head pose, illumination, and background, as well as demographic factors like age, gender, and ethnicity. This paper introduces NIFER, a novel facial expression database designed to address this issue by enhancing racial diversity in existing datasets. NIFER comprises 3,481 images primarily featuring individuals with dark skin tones, collected in real-world settings. These images underwent preprocessing through face detection and histogram equalization before being categorized into five basic facial expressions using a deep learning model. Experiments conducted on both NIFER and FER-2013 datasets revealed a decrease in performance in multiracial FER compared to single-race FER, underscoring the importance of incorporating diverse racial representations in FER datasets to ensure accurate recognition across various ethnicities.
Bias, Ethnicity, Deep learning, Facial expression recognition, Computer vision
Короткий адрес: https://sciup.org/15019640
IDR: 15019640 | DOI: 10.5815/ijem.2025.01.01
Список литературы Racial Bias in Facial Expression Recognition Datasets: Evaluating the Impact on Model Performance
- H. Yang, U. Ciftci, and L. Yin, “Facial Expression Recognition by De-expression Residue Learning,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 2168–2177.
- S. Umer, R. K. Rout, C. Pero, and M. Nappi, “Facial expression recognition with trade-offs between data augmentation and deep learning features,” Journal of Ambient Intelligence and Humanized Computing, vol. 13, no. 2, pp. 721–735, 2021. [Online]. Available: https://doi.org/10.1007/S12652-020-02845-8.
- A. Pourramezan, M. H. Mahoor, and A. P. Fard, “Ad-Corre: Adaptive Correlation-Based Loss for Facial Expression Recognition in the Wild,” IEEE Access, vol. 10, pp. 26756-26768, 2022, doi: 10.1109/ACCESS.2022.3156598.
- F. Zhang, T. Zhang, Q. Mao, and C. Xu, “Joint Pose and Expression Modeling for Facial Expression Recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2018, pp. 3395-3368.
- T. Shahzad, K. Iqbal, M. A. Khan, and N. Iqbal, “Role of Zoning in Facial Expression Using Deep Learning,” IEEE Access, vol. 11, pp. 16493-16508, 2023, doi: 10.1109/ACCESS.2021.DOI.
- K. Li, Y. Jin, M. W. Akram, R. Han, and J. Chen, “Facial expression recognition with convolutional neural networks via a new face cropping and rotation strategy,” Visual Computer, vol. 36, no. 2, pp. 391-404, 2020, doi:10.1007/s00371-019-01627-4.
- P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews, “The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression,” in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2010, pp. 94-101.
- M. J. Lyons, M. Kamachi, and J. Gyoba, “Coding Facial Expressions with Gabor Wavelets (IVC Special Issue),” ArXiv Preprint ArXiv:2009.05938, 2020.
- L. Schoneveld and A. Othmani, “Towards a General Deep Feature Extractor for Facial Expression Recognition,” in Proc. IEEE Int. Conf. Image Process. (ICIP), 2021, pp. 2339-2342, doi: 10.1109/ICIP42928.2021.9506025.
- A. Mollahosseini, B. Hasani, and M. H. Mahoor, “AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild,” IEEE Trans. Affective Comput., vol. 10, no. 1, pp. 18-31, Jan.-Mar. 2019, doi:10.1109/TAFFC.2017.2740923.
- R. Vemulapalli, G. Ai, and A. Agarwala, “A Compact Embedding for Facial Expression Similarity,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 5683-5692.
- A. H. Farzaneh and X. Qi, “Facial expression recognition in the wild via deep attentive center loss,” in Proc. 2021 IEEE Winter Conf. Appl. Comput. Vis. (WACV), 2021, pp. 2401-2410, doi: 10.1109/WACV48630.2021.00245.
- S. Minaee, M. Minaei, and A. Abdolrashidi, “Deep-Emotion: Facial Expression Recognition Using Attentional Convolutional Network,” Sensors, vol. 21, no. 9, article 3046, 2021, doi: 10.3390/s21093046.
- S. Stoychev and H. Gunes, “The effect of model compression on fairness in facial expression recognition,” in Proc. Int. Conf. Pattern Recognit., Aug. 2022, pp. 121-138, Cham, Springer Nature Switzerland.
- I. J. Goodfellow et al., “Challenges in representation learning: A report on three machine learning contests,” in Neural Information Processing: 20th International Conference, ICONIP 2013, Daegu, Korea, November 3-7, 2013, Proceedings, Part III, vol. 20, pp. 117-124, 2013.
- J. Wang, “Improved Facial Expression Recognition Method Based on GAN,” Scientific Programming, 2021, doi:10.1155/2021/2689029.
- K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks,” IEEE Signal Process. Lett., vol. 23, no. 10, pp. 1499-1503, Oct. 2016.
- R. Zhi, C. Zhou, T. Li, S. Liu, and Y. Jin, “Action unit analysis enhanced facial expression recognition by deep neural network evolution,” Neurocomputing, vol. 425, pp. 135-148, 2021, doi: 10.1016/j.neucom.2020.03.036.
- A. M. Reza, “Realization of the Contrast Limited Adaptive Histogram Equalization (CLAHE) for Real-Time Image Enhancement,” J. VLSI Signal Process. Syst., vol. 38, no. 1, pp. 35-44, 2004, doi:10.1023/B:VLSI.0000028532.53893.82.
- Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “Vggface2: A dataset for recognising faces across pose and age,” in Proc. 2018 13th IEEE Int. Conf. Autom. Face Gesture Recognit. (FG 2018), 2018, pp. 67-74.