Радиационный некроз головного мозга у больных, получавших лучевую терапию по поводу опухолей. Патофизиология, диагностика и лечение
Автор: Щербенко О.И., Регентова О.С.
Журнал: Вестник Российского научного центра рентгенорадиологии Минздрава России @vestnik-rncrr
Рубрика: Обзоры
Статья в выпуске: 2 т.18, 2018 года.
Бесплатный доступ
Резюме Одним из наиболее серьезных осложнений лучевой терапии опухолей головного мозга является некроз в зоне облучения. Прогнозирование его развития, понимание патогенеза, своевременная диагностика и адекватное лечение позволят снизить риск и обеспечить необходимую лечебную помощь. В связи с этим представилось целесообразным провести анализ накопленного в литературе опыта по данным проблемам. С этой целью проведен анализ публикаций, посвященных проблеме радиационного некроза (РН), имеющихся в системе MEDLINE. Риск развития РН возрастает с увеличением величины разовых фракций, суммарных доз и объемов облучения, с добавлением к лучевой терапии химио- и иммунотерапии, при повторных курсах лучевой терапии. В патогенезе РН основная роль принадлежит повреждению капиллярного русла за счет гиперпродукции фактора роста эндотелия сосудов (VEGF) с развитием отека тканей, ишемии и воспаления за счет выделения цитокинов. Дифференциальная диагностика РН от возобновления роста опухоли проводится при помощи методик магнитно-резонансной томографии (МР-спектроскопии и взвешенной диффузионной визуализации, перфузионной МРТ), а также при помощи позитронно- эмиссионной томографии с использованием в качестве носителя метионина. Наиболее эффективным методом лечения РН является хирургическое удаление пораженного участка. Но, поскольку операция возможна у небольшого числа больных, основным методом лечения является консервативная терапия, направленная на снижение продукции VEGF, отека и 2 воспаления. С этой целью применяется кортикостероидные гормоны, антиангиогенные факторы и диуретики.
Опухоли мозга, радиационный некроз, диагностика, лучевая терапия, химиотерапия, бевацизумаб
Короткий адрес: https://sciup.org/149132064
IDR: 149132064
Список литературы Радиационный некроз головного мозга у больных, получавших лучевую терапию по поводу опухолей. Патофизиология, диагностика и лечение
- Anbarloui M.R., Ghodsi S.M., Khoshnevisan A., et al. Accuracy of magnetic resonance spectroscopy in distinction between radiation necrosis and recurrence of brain tumors. Iran J Neurol. 2015. V. 14. No. 1. P. 29-34.
- Asao C., Korogi Y., Kitajima M., o et al. Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol. 2005. V. 26. No. 6. P. 1455-1460.
- Biousse V., Newman N.J., Hunter S.B., Hudgins P.A. Diffusion weighted imaging in radiation necrosis. J Neurol Neurosurg Psychiatry. 2003. V. 74. No. 3. P. 382-384.
- Blonigen B.J., Steinmetz R.D., Levin L., et al. Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2010. V. 77. No. 4. P. 996-1001. DOI: 10.1016/j.ijrobp.2009.06.006
- Brandes A.A., Franceschi E., Tosoni A., et al. MGMT promoter methylation status can predict the incidence and outcome of pseudo-progression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol. 2008. V. 26. No. 13. P. 2192-2197. DOI: 10.1200/JCO.2007.14.8163
- Brandsma D., Stalpers L., Taal W., et al. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 2008. V. 9. No. 5. P.453-461.
- DOI: 10.1016/S1470-2045(08)70125-6
- Ceyssens S., Van Laere K., de Groot T., et al. [11C]methionine PET, histopathology, and survival in primary brain tumors and recurrence. AJNR Am J Neuroradiol. 2006. V. 27. N. 7. P.1432-1437.
- Chamberlain M.C., Glantz M.J., Chalmers L., et al. Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J Neurooncol. 2007. V. 82. No. 1. P.81-83.
- Chong V.F., Rumpel H., Aw Y.S., et al. Temporal lobe necrosis following radiation therapy for nasopharyngeal carcinoma: 1H MR spectroscopic findings. Int J Radiat Oncol Biol Phys. 1999. V. 45. No. 3. P. 699-705.
- Chuba P.J., Aronin P., Bhambhani K., et al. Hyperbaric oxygen therapy for radiation-induced brain injury in children. Cancer. 1997. V. 80. No. 10. P. 2005-2012.
- Colaco R.J., Martin P., Kluger H.M. Does immunotherapy increase the rate of radiation necrosis after radiosurgical treatment of brain metastases? J Neurosurg. 2016. V. 125. No. 1. P. 17-23.
- DOI: 10.3171/2015.6.JNS142763
- Dowling C., Bollen A.W., Noworolski S.M., et al. Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol. 2001. No. 4. P. 604-612.
- Drappatz J., Schiff D., Kesari S., et al. Medical management of brain tumor patients. Neurol Clin. 2007. V. 25. P. 1035-1071.
- Freund D., Zhang R., Sanders M., Newhauser W. Predictive Risk of Radiation Induced Cerebral Necrosis in Pediatric Brain Cancer Patients after VMAT Versus Proton Therapy. Cancers (Basel). 2015. V. 7. No. 2. P. 617-630.
- DOI: 10.3390/cancers7020617
- Furuuchi K., Nishiyama A., Yoshioka H., et al. Reenlargement of radiation necrosis after stereotactic radiotherapy for brain metastasis from lung cancer during bevacizumab treatment. Respir Investig. 2017. V. 55. No. 2. P.184-187.
- DOI: 10.1016/j.resinv.2016.11.001
- Glantz M.J., Burger P.C., Friedman A., et al. Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology. 1994. V. 44. No. 11. P. 2020-2027.
- Gonzalez J., Kumar A.J., Conrad C.A., Levin V.A. Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys. 2007. V. 67. No. 2. P. 323-326.
- Graeb D.A., Steinbok P., Robertson W.D. Transient early computed tomographic changes mimicking tumor progression after brain tumor irradiation. Radiology. 1982. V. 144. No. 4. P. 813-817.
- Grossman R., Shimony N., Hadelsberg U., et al. Impact of Resecting Radiation Necrosis and Pseudoprogression on Survival of Patients with Glioblastoma. World Neurosurg. 2016. V. 89. No. 1. P. 37-41.
- DOI: 10.1016/j.wneu.2016.01.020
- Hein P.A., Eskey C.J., Dunn J.F., Hug E.B. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol. 2004. V. 25. No. 2. P. 201-209.
- Kim E.E., Chung S.K., Haynie T.P., et al. Differentiation of residual or recurrent tumors from post-treatment changes with F-18 FDG PET. Radiographics. 1992. V. 12. No. 2. P. 269-279.
- Kim J.H., Chung Y.G., Kim C.Y., et al. Upregulation of VEGF and FGF2 in normal rat brain after experimental intraoperative radiation therapy. J Korean Med Sci. 2004. V. 19. No. 6. P. 879-886.
- DOI: 10.3346/jkms.2004.19.6.879
- Kim J.M., Miller J.A., Kotecha R., et al. The risk of radiation necrosis following stereotactic radiosurgery with concurrent systemic therapies. J Neurooncol. 2017. V. 133. No. 2. P.357-368.
- DOI: 10.1007/s11060-017-2442-8
- Kohshi K., Imada H., Nomoto S., et al. Successful treatment of radiation-induced brain necrosis by hyperbaric oxygen therapy. J Neurol Sci. 2003. V. 209. No. 1-2. P. 115-117.
- Kralik S.F., Ho C.Y., Finke W. Radiation Necrosis in Pediatric Patients with Brain Tumors Treated with Proton Radiotherapy. AJNR Am J Neuroradiol. 2015. V. 36. No. 8. P. 1572-1578.
- DOI: 10.3174/ajnr.A4333
- Kumar A.J., Leeds N.E., Fuller G.N., et al. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology. 2000. V. 217. No. 2. P. 377-384.
- Kumar Y., Gupta N., Mangla M., et al. Comparison between MR Perfusion and 18F-FDG PET in Differentiating Tumor Recurrence from Nonneoplastic Contrast-enhancing Tissue. Asian Pac J Cancer Prev. 2017. V. 18. No. 3. P. 759-763.
- Le Rhun E., Dhermain F., Vogin G., et al. Radionecrosis after stereotactic radiotherapy for brain metastases. Expert Rev Neurother. 2016. V. 16. No. 8. P. 903-914.
- DOI: 10.1080/14737175.2016.1184572
- Masch W.R., Wang P.I., Chenevert T.L., et al. Comparison of Diffusion Tensor Imaging and Magnetic Resonance Perfusion Imaging in Differentiating Recurrent Brain Neoplasm From Radiation Necrosis. Acad Radiol. 2016. V. 23. No. 5. P. 569-576.
- DOI: 10.1016/j.acra.2015.11.015
- Mayhan W.G. Cellular mechanisms by which tumor necrosis factor-alpha produces disruption of the blood-brain barrier. Brain Res. 2002. V. 927. No. 2. P. 144-152.
- Minniti G., Clarke E., Lanzetta G., et al. Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol. 2011. V. 6: 48. 10.1186/1748- 717X-6-48.
- DOI: 10.1186/1748-717X-6-48
- Minniti G., Scaringi C., Paolini S., et al. Single-Fraction Versus Multifraction (3 × 9 Gy) Stereotactic Radiosurgery for Large (>2 cm) Brain Metastases: A Comparative Analysis of Local Control and Risk of Radiation-Induced BrainNecrosis. Int J Radiat Oncol Biol Phys. 2016. V. 95. No. 4. P. 1142-1148.
- DOI: 10.1016/j.ijrobp.2016.03.013
- Miyashita M., Miyatake S., Imahori Y., et al. Evaluation of fluoride-labeled boronophenylalanine-PET imaging for the study of radiation effects in patients with glioblastomas. J Neurooncol. 2008. V. 89. No. 2. P. 239-246.
- DOI: 10.1007/s11060-008-9621-6
- Ogawa T., Kanno I., Shishido F., et al. Clinical value of PET with 18F-fluorodeoxyglucose and L-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiol. 1991 V. 32. No. 3. P. 197-202.
- Ohguri T., Imada H., Kohshi K., et al. Effect of prophylactic hyperbaric oxygen treatment for radiation-induced brain injury after stereotactic radiosurgery of brain metastases. Int J Radiat Oncol Biol Phys. 2007. V. 67. No. 1. P. 248-255.
- DOI: 10.1016/j.ijrobp.2006.08.009
- Ou S.H., Weitz M., Jalas J.R., et al. Alectinib induced CNS radiation necrosis in an ALK+NSCLC patient with a remote (7 years) history of brain radiation. Lung Cancer. 2016. V. 96. No. 1. P. 15-18.
- DOI: 10.1016/j.lungcan.2016.03.008
- Patel K.R., Chowdhary M., Switchenko J.M., et al. BRAF inhibitor and stereotactic radiosurgery is associated with an increased risk of radiationnecrosis. Melanoma Res. 2016. V. 26. No. 4. P. 387-394.
- DOI: 10.1097/CMR.0000000000000268
- Perez-Torres C.J., Yuan L., Schmidt R.E., et al. Specificity of Vascular Endothelial Growth Factor Treatment for Radiation Necrosis. Radiother Oncol. 2015 V. 117. No. 2. P. 382-385.
- Plotkin M., Eisenacher J., Bruhn H., et al. 123I-IMT SPECT and 1H MR-spectroscopy at 3.0 T in the differential diagnosis of recurrent or residual gliomas: a comparative study. J Neurooncol. 2004. V. 70. No. 1. P. 49-58.
- Rock J.P., Scarpace L., Hearshen D., et al. Associations among magnetic resonance spectroscopy, apparent diffusion coefficients, and image-guided histopathology with special attention to radiation necrosis. Neurosurgery. 2004. V. 54. No. 5. P. 1111-1117.
- Ruben J.D., Dally M., Bailey M., et al. Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int J Radiat Oncol Biol Phys. 2006. V. 65. No. 2. P. 499-508.
- Schlemmer H.P., Bachert P., Henze M., et al. Differentiation of radiation necrosis from tumor progression using proton magnetic resonance spectroscopy. Neuroradiology. 2002. V. 44. No. 3. P. 216-222.
- Sharma M., Balasubramanian S., Silva D., et al. Laser interstitial thermal therapy in the management of brain metastasis and radiation necrosis after radiosurgery: An overview. Expert Rev Neurother. 2016. V. 16. No. 2. P. 223-232.
- DOI: 10.1586/14737175.2016.1135736
- Shaw P.J., Bates D. Conservative treatment of delayed cerebral radiation necrosis. J Neurol Neurosurg Psychiatry. 1984. V. 47. No. 12. P. 1338-1341.
- Tsuyuguchi N., Takami T., Sunada I., et al. Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery - in malignant glioma. Ann Nucl Med. 2004. V. 18. No. 2. P. 291-296.
- Wilson C.M., Gaber M.W., Sabek O.M., et al. Radiation-induced astrogliosis and blood-brain barrier damage can be abrogated using anti-TNF treatment. Int J Radiat Oncol Biol Phys. 2009. V. 74. No. 3. P.934-941.
- DOI: 10.1016/j.ijrobp.2009.02.035
- de Wit M.C., de Bruin H.G., Eijkenboom W., et al. Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology. 2004. V.63. No. 3. P. 535-537.
- Yoshii Y. Pathological review of late cerebral radionecrosis. Brain Tumor Pathol. 2008. V. 25. No. 2. P. 51-58.
- DOI: 10.1007/s10014-008-0233-9
- Zeng Q.S., Li C.F., Zhang K., et al. Multivoxel 3D proton MR spectroscopy in the distinction of recurrent glioma from radiation injury. J Neurooncol. 2007. V. 84. No. 1. P. 63-69.
- Zhuang H., Zheng Y., Wang J., et al. Analysis of risk and predictors of brain radiation necrosis after radiosurgery. Oncotarget. 2016. V. 7. No. 7. P. 7773-7779.
- DOI: 10.18632/oncotarget.6532