Radiological and morphological substantiation of using compression osteosynthesis for treating cranial bone fractures. Experimental canine data

Автор: Diachkov Aleksandr Nikolaevich, Gorbach Elena Nikolaevna, Mukhtiaev Sergei Vasilevich, Chirkova Aleftina Mikhailovna

Журнал: Гений ортопедии @geniy-ortopedii

Рубрика: Оригинальные статьи

Статья в выпуске: 2, 2016 года.

Бесплатный доступ

Optimizing the conditions for cranial bone fracture healing remains to be a relevant field of the current traumatology and orthopaedics. Purpose. To study the impact of compression on reparative osteogenesis when engrafting the resected flaps of calvarial bones. Materials and methods. Two groups of experiments performed in 20 adult mongrel dogs complying with all the requirements of the European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes. Dogs from Group 1 (n=10) underwent resection of the two sites of calvarial bones (the caudal flap preserved connections with surrounding soft tissues, the cranial flap - not preserved) of rectangular shape and 1.9×1.5 cm by size, they were laid into their former place and fixation performed with compression using thin wires with stoppers to the medial defect margin by transosseous osteosynthesis method. Compression produced by tightening fixing wires with the force of 40 kg. In Group 2 (n=10) bone flaps were laid into the defect without fixation. The investigations (clinical, radiological and histological) performed 7, 14, 21, 28 and 60 days after surgery. Results. Compression produced at the junction of the margins of free bone fragments and calvarial flat bone defect revealed to contribute to bone tissue formation in earlier periods of time. Conclusion. The results obtained in the present study formed the basis for using the technique of transosseous compression osteosynthesis in treatment of patients with cranial bone fractures in clinical departments of the Center.

Еще

Calvarial bones, fracture, union of bone fragments, transosseous compression osteosynthesis

Короткий адрес: https://sciup.org/142121897

IDR: 142121897   |   DOI: 10.18019/1028-4427-2016-2-70-77

Список литературы Radiological and morphological substantiation of using compression osteosynthesis for treating cranial bone fractures. Experimental canine data

  • Камалов И.И. Дифференциальная рентгенодиагностика заболеваний костей черепа//Советская медицина. 1985. № 6. С. 119-123.
  • Осипенкова Т.К. Гистоморфология заживления переломов, трещин и дефектов костей свода черепа//Судебно-мед. экспертиза. 2004. № 2. С. 3-4.
  • Skull bone flap fixation -comparative experimental study to assess the reliability of a new grip-like titanium device (Skull Grip) versus traditional sutures: technical note/S. Chibbaro, O. Makiese, G. Mirone, D. Bresson, D. Chauvet, P. Di Emidio, R. Galzio, B. George//Minim. Invasive Neurosurg. 2009. Vol. 52, N 2. P. 98-100.
  • Деев Р.В. Анализ репаративной регенерации костей крыши черепа//Морфология. 2007. Т. 132, № 6. С. 64-69.
  • Cranial bone flap fixation using a new device (Cranial LoopTM)/K. Van Loock, T. Menovsky, N. Kamerling, D. De Ridder//Minim. Invasive Neurosurg. 2011. Vol. 54, N 3. P. 119-124.
  • Winston K.R., Wang M.C. Cranial bone fixation: review of the literature and description of a new procedure//J. Neurosurg. 2003. Vol. 99, N 3. P. 484-488.
  • Skull bone flap fixation -reliability and efficacy of a new grip-like titanium device (Skull Grip) versus traditional sutures: a clinical randomized trial/S. Chibbaro, O. Makiese, D. Bresson, S. Hamdi, J.F. Cornelius, J.P. Guichard, A. Reiss, S. Bouazza, E. Vicaut, A. Ricci, R. Galzio, P. Poczos, B. George, M. Marsella, P. Di Emidio//Minim. Invasive Neurosurg. 2011. Vol. 54, N 5-6. P. 282-285.
  • Chibbaro S., Tacconi L. Use of skin glue versus traditional wound closure methods in brain surgery: A prospective, randomized, controlled study//J. Clin. Neurosci. 2009. Vol. 16, N 4. P. 535-539.
  • Shevtsov V.I., Diachkov A.N., Khudiaev A.T. Substitution of cranial defects by bone transport. In: M.L. Samchukov, J.B. Cope, A.M. Cherkashin. Craniofacial Distraction Osteogenesis. St. Louis, United States: Elsevier, Health Sciences Division, 2001. P. 547-560.
  • Transport disc distraction osteogenesis for the reconstruction of a calvarial defect/I.S. Yun, H.Y. Mun, J.W. Hong, E.J. Cho, D.G. Woo, H.S. Kim, Y.O. Kim, B.Y. Park, D.K. Rah//J. Craniofac. Surg. 2011. Vol. 22, N 2. P. 690-693.
  • Biomechanical evaluation of rat skull defects, 1, 3, and 6 months after implantation with osteopromotive substances/L. Jones, J.S. Thomsen, L. Mosekilde, C. Bosch, B. Melsen//J. Craniomaxillofac. Surg. 2007. Vol. 35, N 8. P. 350-357.
  • Регенерация костей черепа взрослых кроликов при имплантации коммерческих остеоиндуктивных материалов и трансплантации тканеинженерных конструкций/А.В. Волков, И.С. Алексеева, А.А. Кулаков, Д.В. Гольдштейн, С.А. Шустров, А.И. Шураев, И.В. Арутюнян, Т.Б. Бухарова, А.А. Ржанинова, Г.Б. Большакова, А.С. Григорьян//Клеточные технологии в биологии и медицине. 2010. № 2. С. 72-77.
  • Injectable reactive biocomposites for bone healing in critical-size rabbit calvarial defects/J.E. Dumas, P.B. BrownBaer, E.M. Prieto, T. Guda, R.G. Hale, J.C. Wenke, S.A. Guelcher//Biomed. Mater. 2012. Vol. 7, N 2. P. 024112.
  • Reconstruction of rat calvarial defects with human mesenchymal stem cells and osteoblast-like cells in poly-lactic-co-glycolic acid scaffolds/C. Zong, D. Xue, W. Yuan, W. Wang, D. Shen, X. Tong, D. Shi, L. Liu, Q. Zheng, C. Gao, J. Wang//Eur. Cell. Mater. 2010. Vol. 20. P. 109-120.
  • Chemical control of FGF-2 release for promoting calvarial healing with adipose stem cells/M.D. Kwan, M.A. Sellmyer, N. Quarto, A.M. Ho, T.J. Wandless, M.T. Longaker//J. Biol. Chem. 2011. Vol. 286, N 13. P. 11307-11313.
  • Acute skeletal injury is necessary for human adipose-derived stromal cell-mediated calvarial regeneration/B. Levi, A.W. James, E.R. Nelson, M. Peng, D.C. Wan, G.W. Commons, M. Lee, B. Wu, M.T. Longaker//Plast. Reconstr. Surg. 2011. Vol. 127, N 3. P. 1118-1129.
  • Osteogenesis induced by autologous bone marrow cells transplant in the pediatric skull/F. Velardi, P.R. Amante, M. Caniglia, G. De Rossi, P. Gaglini, G. Isacchi, P. Palma, E. Procaccini, F. Zinno//Childs Nerv. Syst. 2006. Vol. 22, N 9. P. 1158-1166.
  • Effect of recombinant human bone morphogenetic protein-2, -4, and -7 on bone formation in rat calvarial defects/S.J. Hyun, D.K. Han, S.H. Choi, J.K. Chai, K.S. Cho, C.K. Kim, C.S. Kim//J. Periodontol. 2005. Vol. 76, N 10. P. 1667-1674.
  • Skull bone regeneration in nonhuman primates by controlled release of bone morphogenetic protein-2 from a biodegradable hydrogel/Y. Takahashi, M. Yamamoto, K. Yamada, O. Kawakami, Y. Tabata//Tissue Eng. 2007. Vol. 13, N 2. P. 293-300.
  • BMP-2-mediated regeneration of large-scale cranial defects in the canine: an examination of different carriers/C.R. Kinsella Jr., M.R. Bykowski, A.Y. Lin, J.J. Cray, E.L. Durham, D.M. Smith, G.E. DeCesare, M.P. Mooney, G.M. Cooper, J.E. Losee//Plast. Reconstr. Surg. 2011. Vol. 127, N 5. P. 1865-1873.
  • In vivo bone regenerative effect of low-intensity pulsed ultrasound in rat calvarial defects/A. Hasuike, S. Sato, A. Udagawa, K. Ando, Y. Arai, K. Ito//Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011. Vol. 111, N 1. P. e12-e20.
  • Latex use as an occlusive membrane for guided bone regeneration/C. Ereno, S.A. Guimarães, S. Pasetto, R.D. Herculano, C.P. Silva, C.F. Graeff, O. Tavano, O. Baffa, A. Kinoshita//J. Biomed. Mater. Res. A. 2010. Vol. 95, N 3. P. 932-939.
  • Osteoconductive effects of 3 heat-treated hydroxyapatites in rabbit calvarial defects/P. Pripatnanont, T. Nuntanaranont, S. Vongvatcharanon, S. Limlertmongkol//J. Oral Maxillofac. Surg. 2007. Vol. 65, N 12. P. 2418-2424.
  • The effect of a fibrin-fibronectin/beta-tricalcium phosphate/recombinant human bone morphogenetic protein-2 system on bone formation in rat calvarial defects/S.J. Hong, C.S. Kim, D.K. Han, I.H. Cho, U.W. Jung, S.H. Choi, C.K. Kim, K.S. Cho//Biomaterials. 2006. Vol. 27, N 20. P. 3810-3816.
  • Scale-up of MSC under hypoxic conditions for allogeneic transplantation and enhancing bony regeneration in a rabbit calvarial defect model/T.L. Yew, T.F. Huang, H.L. Ma, Y.T. Hsu, C.C. Tsai, C.C. Chiang, W.M. Chen, S.C. Hung//J. Orthop. Res. 2012. Vol. 30, N 8. P. 1213-1220.
  • Evaluation of BMP-2 gene-activated muscle grafts for cranial defect repair/F. Liu, R.M. Porter, J. Wells, V. Glatt, C. Pilapil, C.H. Evans//J. Orthop. Res. 2012. Vol. 30, N 7. P. 1095-1102.
  • Osteogenesis in calvarial defects: contribution of the dura, the pericranium, and the surrounding bone in adult versus infant animals/A.K. Gosain, T.D. Santoro, L.S. Song, C.C. Capel, P.V. Sudhakar, H.S. Matloub//Plast. Reconstr. Surg. 2003. Vol. 112, N 2. P. 515-527.
  • Bone formation in rat calvaria ceases within a limited period regardless of completion of defect repair/T. Honma, T. Itagaki, M. Nakamura, S. Kamakura, I. Takahashi, S. Echigo, Y. Sasano//Oral Dis. 2008. Vol. 14, N 5. P. 457-64.
  • Goodship A.E., Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures//J. Bone Joint Surg. Br. 1985. Vol. 67, N 4. P. 650-655.
  • Effects of in vivo mechanical loading on large bone defect regeneration/J.D. Boerckel, Y.M. Kolambkar, H.Y. Stevens, A.S. Lin, K.M. Dupont, R.E. Guldberg//J. Orthop. Res. 2012. Vol. 30, N 7. P. 1067-1075.
  • Садофьев И.А., Подгорная О.И. Остеогенная дифференцировка в культуре//Цитология. 1999. Т. 41, № 10. С. 877-885.
  • Ingber D.E. Tensegrity: the architectural basis of cellular mechanotransduction//Annu. Rev. Physiol. 1997. Vol. 59. P. 575-599.
  • The nuclear localization of MGF receptor in osteoblasts under mechanical stimulation/Q. Peng, J. Qiu, J. Sun, L. Yang, B. Zhang, Y. Wang//Mol. Cell. Biochem. 2012. Vol. 369, N 1-2. P. 147-156.
  • Osteoclastic activity begins early and increases over the course of Bone healing/H. Schell, J. Lienau, D.R. Epari, P. Seebeck, C. Exner, S. Muchow, H. Bragulla, N.P. Haas, G.N. Duda//Bone. 2006. Vol. 38, N 4. P. 547-554.
  • Kwong F.N., Harris M.B. Recent developments in the biology of fracture repair//J. Am. Acad. Orthop. Surg. 2008. Vol. 16, N 11. P. 619-625.
  • Изменение остеоиндуктивной активности костного матрикса в Онтогенезе/Д.Д. Сумароков, М.Б. Швырков, А.Х. Шамсутдинов, Д.В. Гуткин, Н.А. Афанасенко//Онтогенез. 1991. Т. 19, № 5. С. 195-198.
  • Intravital microscopic studies of angiogenesis during bone defect healing in mice calvaria/J.H. Holstein, S.C. Becker, M. Fiedler, P. Garcia, T. Histing, M. Klein, M.W. Laschke, M. Corsten, T. Pohlemann, M.D. Menger//Injury. 2011. Vol. 42, N 8. P. 765-771.
  • Bone formation and neovascularization mediated by mesenchymal stem cells and endothelial cells in critical-sized calvarial defects/S. Koob, N. Torio-Padron, G.B. Stark, C. Hannig, Z. Stankovic, G. Finkenzeller//Tissue Eng. Part A. 2011. Vol. 17, N 3-4. P. 311-321.
  • Angiogenesis in bone regeneration/K.D. Hankenson, M. Dishowitz, C. Gray, M. Schenker//Injury. 2011. Vol. 42, N 6. P. 556-561.
Еще
Статья научная