Ranking of Machine Learning Algorithms Used in Disease Prediction: A Review-based Approach

Автор: Shunmuga Priya Subramanian, Amuthaguka Duraipandian

Журнал: International Journal of Information Technology and Computer Science @ijitcs

Статья в выпуске: 6 Vol. 16, 2024 года.

Бесплатный доступ

There are remarkable improvements in the healthcare sector particularly in patient care, maintaining and protecting the data, and saving administrative and operating costs, etc. Among the various functions in the healthcare sector, disease diagnosis is considered as the foremost function because it saves a life at the correct time. Early detection of diseases helps in disease prevention, letting the patients get vigorous and effective treatment and saving their lives. Several techniques were suggested by the researchers for disease prediction. Many literatures have been witnessed on disease prediction. This article reviews several articles systematically and compares various machine learning (ML) algorithms for disease prediction, including the Random Forest (RF), Naive Bayes (NB), Decision Tree (DT), Support Vector Machine (SVM), and Logistic Regression (LR) algorithms. A thorough analysis is presented based on the number of publications year-wise, disease-wise, and also based on the performance metrics. This review thoroughly analyzes and compares various ML techniques applied in disease prediction, focusing on classification algorithms commonly employed in healthcare applications. From the systematic review, a multi objective optimization method named Grey Relational Analysis (GRA) is used to rank the ML algorithms using their performance metrics. The results of this paper help the researchers to have an insight into the disease prediction domain. Also, the performance of various ML algorithms aids the researchers to choose a better methodology to predict a disease.

Еще

Machine Learning, Disease Prediction, Review, Grey Relational Analysis

Короткий адрес: https://sciup.org/15019587

IDR: 15019587   |   DOI: 10.5815/ijitcs.2024.06.06

Список литературы Ranking of Machine Learning Algorithms Used in Disease Prediction: A Review-based Approach

  • D. Theng, and K. K. Bhoyar, “Feature selection techniques for machine learning: a survey of more than two decades of research,” Knowledge and Information Systems, vol. 66, pp. 1575–1637, 2024, DOI: 10.1007/s10115-023-02010-5.
  • Abid Haleem, Mohd Javaid, Ravi Pratap Singh, and Rajiv Suman, “Exploring the revolution in healthcare systems through the applications of digital twin technology,” Biomedical Technology, vol. 4, pp. 28-38, 2023, DOI: 10.1016/j.bmt.2023.02.001.
  • S. Phani Praveen, T. Bala Murali Krishna, C. H. Anuradha, Srinivasa Rao Mandalapu, Pappula Sarala, and S. Sindhura, “A robust framework for handling health care information based on machine learning and big data engineering techniques,” International Journal of Healthcare Management, pp. 1-18, 2022, DOI: 10.1080/20479700.2022.2157071.
  • S. Shamshirband, M. Fathi, A. Dehzangi, A. T. Chronopoulos, and H. Alinejad-Rokny, “A review on deep learning approaches in healthcare systems: taxonomies, challenges, and open issues,” Journal of Biomedical Informatics, vol. 113, Article no. 103627, 2021, DOI: 10.1016/j.jbi.2020.103627
  • H. Kaur, and V. Kumari, “Predictive modelling and analytics for diabetes using a machine learning Approach,” Applied Computing and Informatics, vol. 18, no. 1/2, pp. 90-100, 2022, DOI: 10.1016/j.aci.2018.12.004
  • S. Sun, “A survey of multi-view machine learning,” Neural Computing and Applications, vol. 23, no. 7–8, pp. 2031–2038, 2013, DOI: 10.1007/s00521-013-1362-6
  • M. Nilashi, O. B. Ibrahim, H. Ahmadi, and L. Shahmoradi, “An analytical method for diseases prediction using machine learning techniques,” Computers & Chemical Engineering, vol. 106, pp. 212–223, 2017, DOI: 10.1016/j.compchemeng.2017.06.011
  • F. Z. Esfahlani, K. Visser, G. P. Strauss, and H. Sayama, “A network-based classification framework for predicting treatment response of schizophrenia patients,” Expert System with Applications, vol. 109, pp. 152–161, 2018, DOI: 10.1016/j.eswa.2018.05.005
  • R. H. Ekpo, V. C. Osamor, A. A. Azeta, E. Ikeakanam, and B. O. Amos, “Machine learning classification approach for asthma prediction models in children,” Health and Technology, vol. 13, pp. 1–10, 2023, DOI: 10.1007/s12553-023-00732-8
  • T. Turki, and Y. H. Taguchi, “Machine learning algorithms for predicting drugs–tissues relationships,” Expert System with Applications, vol. 127, pp. 167-186, 2019, DOI: 10.1016/j.eswa.2019.02.013
  • N. Bhatla, and K. Jyoti, “A novel approach for heart disease diagnosis using data mining and fuzzy logic,” International Journal of Computer Applications, vol. 54, no. 17, pp. 16-21, 2012, DOI: 10.5120/8658-2498
  • M. Mohri, A. Rostamizadeh, and A. Talwalkar, “Foundations of Machine Learning,” The MIT Press, London, UK, 2018.
  • M. M. Eissa, M. Elmogy, and M. Hashem, “Rough – granular computing knowledge discovery models for medical classification,” Egyptian Informatics Journal, vol. 17, no. 3, pp. 265–272, 2016, DOI: 10.1016/j.eij.2016.01.001
  • A. Mahabub, “A robust voting approach for diabetes prediction using traditional machine learning techniques,” SN Applied Sciences, vol. 1667, 2019, DOI: 10.1007/s42452-019-1759-7
  • J. Jeon, P. J. Leimbigler, G. Baruah, M. H. Li, Y. Fossat, and A. J. Whitehead, “Predicting glycaemia in type 1 diabetes patients: Experiments in feature engineering and data imputation,” Journal of Healthcare Informatics Research, vol. 4, pp. 71–90, 2020, DOI: 10.1007/s41666-019-00063-2
  • Z. Khandezamin, M. Naderan, and M. Javad Rashti, “Detection and classification of breast cancer using logistic regression feature selection and GMDH classifier,” Journal of Biomedical Informatics, vol. 111, Article no. 103591, 2020, DOI: 10.1016/j.jbi.2020.103591.
  • C. G. Owen, F. W. Fitzke, and E. G. Woodward, “A new computer assisted objective method for quantifying vascular changes of the bulbar conjunctivae,” Ophthalmic and Physiological Optics, vol. 16, pp. 430–437, 1996, DOI: 10.1016/0275-5408(96)00037-3
  • L. Brea, N. Barreira, A. Mosquera, H. Pena-Verdeal, and E. Yebra-Pimentel, “Comparing machine learning techniques in a hyperemia grading framework,” in International Conference on Agents and Artificial Intelligence 2016, vol. 2, pp. 423-429, 2016, DOI: 10.5220/0005756004230429
  • V. Nandagopal, S. Geeitha, K. V. Kumar, and J. Anbarasi, “Feasible analysis of gene expression –a computational based classification for breast cancer,” Measurement, vol. 140, pp. 120–125, 2019, DOI: 10.1016/j.measurement.2019.03.015
  • C. B. C. Latha, and S. C. Jeeva, “Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques,” Informatics in Medicine Unlocked, vol. 16, Article no. 100203, 2019, DOI: 10.1016/j.imu.2019.100203
  • S. D. Desai, S. Giraddi, S. P. Narayankar, N. R. Pudakalakatti, and S. Sulegaon, “Back-propagation neural network versus logistic regression in heart disease classification,” In: Mandal, J., Bhattacharyya, D., Auluck, N. (eds.), Advanced Computing and Communication Technologies. pp 133–144. Springer, Singapore, 2019, DOI: 10.1007/978-981-13-0680-8_13
  • C. Tania, and O. Raymond, “Logistic regression prediction model for cardiovascular disease,” International Journal of New Media Technology, vol. 7, pp. 33-38, 2020, DOI: 10.31937/ijnmt.v7i1.1340 .
  • M. E. Hossain, S. Uddin, and A. Khan, “Network analytics and machine learning for predictive risk modelling of cardiovascular disease in patients with type 2 diabetes,” Expert System with Applications, vol. 164, Article no. 113918, 2021, DOI: 10.1016/j.eswa.2020.113918
  • G. Ambrish, G. Bharathi, G. Anitha, S. Chetana, S., Dhanraj, and M. Kiran, “Logistic regression technique for prediction of cardiovascular disease,” Managing Global Transit, vol. 3, no. 1, pp. 127-130, 2022, DOI: 10.1016/j.gltp.2022.04.008
  • A. B. Majumder, S. Gupta, D. Singh, and S. Majumder, “ An intelligent system for prediction of COVID-19 case using machine learning framework-logistic regression,” Journal of Physics: Conference Series, vol. 1797, Article no. 012011, 2021, DOI: 10.1088/1742-6596/1797/1/012011
  • A. Verghese, T. Sudalaimuthu, and S. Visalaxi, “Analysis and forecasting Covid-19 spread in India using logistic regression and prophet time series,” in International Conference on Computational Performance Evaluation - 2021, pp. 928-932, 2021, DOI: 10.1109/ComPE53109.2021.9752218.
  • A. Kulenovic, and A. Lagumdzija-Kulenovic, “Using logistic regression to predict long COVID conditions in chronic patients,” Studies in Health Technology and Informatics, vol. 29, pp. 265-268, 2022, DOI: 10.3233/SHTI220713
  • R. Nopour, M. Shanbehzadeh, and H. Kazemi-Arpanahi, “Using logistic regression to develop a diagnostic model for COVID-19: A single-center study,” Journal of Education and Health Promotion, vol.11, Article no. 153, 2022, DOI: 10.4103/jehp.jehp_1017_21.
  • C. Corinna, and V. Vladimir, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, 1995, DOI: 10.1007/BF00994018 .
  • Y. J. Son, H. G. Kim, E. H. Kim, S. Choi, and S. K. Lee, “Application of support vector machine for prediction of medication adherence in heart failure patients,” Journal of Healthcare Informatics Research, vol. 16, no. 4, pp. 253-261, 2010, DOI: 10.4258/hir.2010.16.4.253
  • W. Yu, T. Liu, R. Valdez, M. Gwinn, and M. J. Khoury, “Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes,” BMC Medical Informatics and Decision Making, vol. 22, pp. 10-16, 2010, DOI: 10.1186/1472-6947-10-16
  • S. Huang, N. Cai, P. P. Pachecom, S. Narrandesm, Y. Wang, and W. Xu, “Applications of support vector machine learning in cancer genomics,” Cancer Genomics Proteomics, vol. 15, no. 1, pp. 41-51, 2018, DOI: 10.21873/cgp.20063
  • Md. Ehtisham Farooqui, and Jameel Ahmad, “Disease prediction system using support vector machine and multilinear regression,” International Journal of Innovative Research in Computer Science and Technology, vol. 8, no. 4, pp. 331–336, 2020, DOI: 10.2139/ssrn.3673232
  • E. Owusu, P. B. Sekyerehene, J. K. Appati, and J. Y. Ludu, “Computer-aided diagnostics of heart disease risk prediction using boosting support vector machine,” Computational Intelligence and Neuroscience, vol. 2021, Article no. 3152618, 2021, DOI: 10.1155/2021/3152618
  • H. Puri, J. Chaudhary, K. R. Raghavendra, R. Mantri, and K. Bingi, “Prediction of heart stroke using support vector machine algorithm,” in 8th International Conference on Smart Computing and Communications - 2021, pp. 21-26, 2021, DOI: 10.1109/ICSCC51209.2021.9528241.
  • H. K. Madhu, and D. Ramesh, “Heart attack analysis and prediction using SVM,” International Journal of Computer Application, vol. 183, no. 27, pp. 35-39, 2021, DOI: 10.5120/ijca2021921658
  • S. Guhathakurata, S. Kundu, A. Chakraborty, and J. S. Banerjee, “ A novel approach to predict COVID-19 using support vector machine,” Data Science for COVID-19, vol. 2021, pp. 351–364, 2021, DOI: 10.1016/B978-0-12-824536-1.00014-9.
  • R. R. Sarra, A. M. Dinar, M. A. Mohammed, and K. H. Abdulkareem, “Enhanced heart disease prediction based on machine learning and χ2 statistical optimal feature selection model,” Designs, vol. 6, no. 5, Article no. 87, 2022, DOI: 10.3390/designs6050087
  • W. Ji, T. Yang, Q. Yuan, G. Cheng, and S. Yu, “Prediction model of accident vehicle speed based on artificial intelligence decision tree algorithm,” In: Long, S., Dhillon, B.S. (eds.) Man-Machine-Environment System Engineering. MMESE 2022, Lecture Notes in Electrical Engineering, pp 317–324 Springer, Singapore, 2023, DOI: 10.1007/978-981-19-4786-5_44
  • J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, pp. 81–106, 1986, DOI: 10.1007/BF00116251
  • S. D. Howlader, T. Biswas, A. Roy, G. Mortuja, and D. Nandi, "A comparative analysis of algorithms for heart disease prediction using data mining", International Journal of Information Technology and Computer Science, vol.15, no.5, pp.45-54, 2023. DOI: 10.5815/ijitcs.2023.05.05
  • Purushottam, K. Saxena. and R. Sharma, “Efficient heart disease prediction system using decision tree,” in International Conference on Computing, Communication & Automation - 2015, pp. 72-77, 2015, DOI: 10.1109/CCAA.2015.7148346
  • B. Bahrami, and M. H. Shirvani, “Prediction and diagnosis of heart disease by data mining techniques,” Journal of Multidisciplinary Engineering and Science, vol. 2, no. 2, pp. 164-168, 2015.
  • M. Subburaj, and P. Ramu, “Heart disease prediction system using decision tree and Naive Bayes algorithm,” Current Medical Imaging Reviews, vol. 15, no. 8, pp. 712 – 717, 2019, DOI: 10.2174/1573405614666180322141259
  • A. Ahmad, O. Safi, S. Malebary, S. Alesawi, and E. Alkayal, “Decision tree ensembles to predict Coronavirus disease 2019 infection: A comparative study,” Complexity, vol. 2021, Article no. 5550344, 2021, DOI: 10.1155/2021/5550344
  • N. Kapoor, and P. Singh, “Heart disease prediction using decision tree and random forest classification techniques,” in Goundar, S., Rayani, P. (eds.) Applications of Big Data in Large- and Small-Scale Systems, pp. 234-259. IGI Global, 2021. DOI: 10.4018/978-1-7998-6673-2.ch015
  • V. S. K. Reddy, P. V. Meghana, N. V. S. Reddy, and B. A. Rao, “Prediction on cardiovascular disease using decision tree and Naïve Bayes classifiers,” Journal of Physics: Conference Series, vol. 2161, Article no. 012015, 2022, DOI: 10.1088/1742-6596/2161/1/012015
  • C. Sateesh, and R. Balamanigandan, “Heart disease prediction using innovative decision tree technique for increasing the accuracy compared with convolutional neural networks,” in 2nd International Conference on Innovative Practices in Technology and Management - 2022, pp. 583-587, 2022, DOI: 10.1109/ICIPTM54933.2022.9754196.
  • R. Vijaya Saraswathi, K. Gajavelly, A. Kousar Nikath, R. Vasavi, and R. Reddy Anumasula, “Heart disease prediction using decision tree and SVM,”in A. B. Reddy, B. Kiranmayee, R. R. Mukkamala, and K. Srujan Raju, (eds.), Algorithms for Intelligent Systems, Springer, Singapore. pp 69–78, 2022, DOI: 10.1007/978-981-16-7389-4_7
  • K. Fawagreh, M. M. Gaber, and E. Elyan, “Random forests: from early developments to recent advancements,” Systems Science & Control Engineering, vol. 2, no. 1, pp. 602-609, 2014, DOI: 10.1080/21642583.2014.956265
  • G. Szűcs, “Random response forest for privacy-preserving classification,” Journal of Computer Engineering, vol. 2013, pp. 1–6, 2013, DOI: 10.1155/2013/397096
  • T. Ooka, H. Johno, K. Nakamoto, Y. Yoshioki, H. Yokomichi, and Z. Yamagata, “Random forest approach for determining risk prediction and predictive factors of type 2 diabetes: Large-scale health check-up data in Japan,” BMJ Nutrition, Prevention & Health, vol. 4, Article no. e000200, pp. 140-148, 2021, DOI: 10.1136/bmjnph-2020-000200
  • S. Sharma, A. Aggarwal, and T. Choudhury, “Breast cancer detection using machine learning algorithms,” in International Conference on Computational Techniques, Electronics and Mechanical Systems - 2018, pp. 114-118, 2018, DOI: 10.1109/CTEMS.2018.8769187
  • S. Bharati, M. A. Rahman, and P. Podder, “Breast cancer prediction applying different classification algorithm with comparative analysis using WEKA,” in 4th International Conference on Electrical Engineering, Information and Communication Technology 2018, pp. 581-584, 2018, DOI: 10.1109/CEEICT.2018.8628084.
  • C. C. Wu, W. C. Yeh, W. D. Hsu, M. M. Islam, P. A. A. Nguyen, T. N. Poly, Y. C. Wang, H. C. Yang, and Y. C. Jack Li, “Prediction of fatty liver disease using machine learning algorithms,” Computer Methods and Programs in Biomedicine, vol. 170, pp. 23-29, 2019, DOI: 10.1016/j.cmpb.2018.12.032.
  • E. D. H. Gates, J. S. Lin, J.S. Weinberg, S. S. Prabhu, J. Hamilton, J. D. Hazle, G. N. Fuller, V. Baladandayuthapani, D. T. Fuentes, and D. Schellingerhout, “Imaging-based algorithm for the local grading of glioma,” American Journal of Neuroradiology, vol. 41, no. 3, pp. 400-407, 2020, DOI: 10.3174/ajnr.A6405.
  • Z. Ma, J. Ma, Y. Miao, and X. Liu, “Privacy-preserving and high- accurate outsourced disease predictor on random forest,” Information Science, vol. 496, pp. 225–241, 2019, DOI: 10.1016/j.ins.2019.05.025
  • S. Mohan, T. Chandrasegar, and S. Gautam, “Effective heart disease prediction using hybrid machine learning techniques,” IEEE Access, vol. 7, pp. 81542-81554, 2019, DOI: 10.1109/ACCESS.2019.2923707.
  • A. K. G. Escamilla, A. H. E. L. Hassani, and E. Andres, “Classification models for heart disease prediction using feature selection and PCA,” Informatics in Medicine Unlocked, vol. 19, Article no. 100330, 2020, DOI: 10.1016/j.imu.2020.100330
  • D. Shah, S. Patel, and S. K. Bharti, “Heart disease prediction using machine learning techniques”, SN Computer Science, vol. 1, Article no. 345, 2020, DOI: 10.1007/s42979-020-00365-y
  • M. Pal, and S. Parija, “Prediction of heart diseases using random forest,” Journal of Physics: Conference Series, vol. 1817, Article no. 012009, 2021, DOI: 10.1088/1742-6596/1817/1/012009
  • V. Jackins, S. Vimal, M. Kaliappan, and M. Y. Lee, “AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes,” Journal of Supercomputing, vol. 77, pp. 5198–5219, 2021, DOI: 10.1007/s11227-020-03481-x
  • R. Shanthakumari, C. Nalini, S. Vinothkumar, E. M. Roopadevi, and B. Govindaraj, “Multi disease prediction system using random forest algorithm in healthcare system,” in International Mobile and Embedded Technology Conference - 2022, pp. 242-247, 2022, DOI: 10.1109/MECON53876.2022.9752432.
  • W. Wei, S. Visweswaran, and G. F. Cooper, “The application of Naive Bayes model averaging to predict Alzheimer’s disease from genome-wide data,” Journal of the American Medical Informatics Association, vol. 18, no. 4, pp. 370– 375, 2011, DOI: 10.1136/amiajnl-2011-000101
  • K. J. Wang, B. Makond, and K. M. Wang, “Modeling and predicting the occurrence of brain metastasis from lung cancer by Bayesian network: a case study of Taiwan,” Computers in Biology and Medicine, vol. 47, pp. 147–160, 2014, DOI: 10.1016/j.compbiomed.2014.02.002.
  • E. Miranda, E. Irwansyah, A. Y. Amelga, M. M. Maribondang, and M. Salim, “Detection of cardiovascular disease risk's level for adults using Naive Bayes classifier,” Healthcare Informatics Research, vol. 22, no. 3, pp. 196-205, 2016, DOI: 10.4258/hir.2016.22.3.196
  • J. Singh, A. Kamra, and H. Singh, “Prediction of heart diseases using associative classification,” in 5th International Conference on Wireless Networks and Embedded Systems - 2016, pp. 1-7, 2016, DOI: 10.1109/WECON.2016.7993480.
  • D. Bzdok, N. Altman, and M. Krzywinski, “Statistics versus machine learning,” Natural Methods, vol. 15, pp. 233–234, 2018, DOI: 10.1038/nmeth.4642
  • U. N. Dulhare, “Prediction system for heart disease using Naive Bayes and particle swarm optimization,” Biomedical Research, vol. 29, no. 12, pp. 2646-2649, 2018, DOI: 10.4066/biomedicalresearch.29-18-620
  • S. Anitha, and N. Sridevi, “Heart disease prediction using data mining techniques,” Journal of Applied Analysis and Computation, vol. XIII, no. II, pp. 48-55, 2019.
  • A. Hemanth Kumar, and G. Pavani, “Naive Bayes classifier for predicting Corona virus,” Journal of Engineering Science, vol. 13, no. 09, pp. 144 – 155, 2022, DOI: 10.1109/ICICV50876.2021.9388410.
  • R. Das, “A comparison of multiple classification methods for diagnosis of Parkinson disease,” Expert System with Applications, vol. 37, no. 2, pp. 1568-1572, 2010, DOI: 10.1016/j.eswa.2009.06.040
  • S. Wu, and J. Guo, “A data mining analysis of the Parkinson’s disease,” iBusiness, vol. 3, pp. 71-75, 2011, DOI: 10.4236/ib.2011.31012
  • P. Naraei, A. Abhari, and A. Sadeghian, “Application of multilayer perception neural networks and support vector machines in classification of healthcare data,” in Future Technologies Conference – 2016. pp. 848-852, 2016, DOI: 10.1109/FTC.2016.7821702.
  • L. Tapak, N. Shirmohammadi-Khorram, P. Amini, B. Alafchi, O. Hamidi, and J. Poorolajal, “Prediction of survival and metastasis in breast cancer patients using machine learning classifiers,” Clinical Epidemiology and Global Health, vol. 7, no. 3, pp. 293–299, 2019, DOI: 10.1016/j.cegh.2018.10.003
  • E. Christodoulou, J. Ma, G. S. Collins, E. W. Steyerberg, J. Y. Verbakel, and B. Van Calster, “A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models,” Journal of Clinical Epidemiology, vol. 110, pp. 12-22, 2019, DOI: 0.1016/j.jclinepi.2019.02.004
  • K. M. Almustafa, “Prediction of heart disease and classifiers’ sensitivity analysis,” BMC Bioinformatics, vol. 21, no. 1, pp. 1-18, 2020, DOI: 10.1186/s12859-020-03626-y
  • Y. L. Chiu, M. J. Jhou, T. S. Lee, C. J. Lu, and M. S. Chen, “Health data-driven machine learning algorithms applied to risk indicators assessment for chronic kidney disease,” Risk Management and Healthcare Policy, vol. 2021, no. 14, pp. 4401-4412, 2021, DOI: 10.2147/RMHP.S319405
  • N. S. Hassan, A. Mohsin Abdulazeez, J. N. Saeed, D. Qader Zeebaree, A. Al-Zebari, and F. Y. H. Ahmed, “A compassion of three data mining algorithms for heart disease prediction,” in IEEE Symposium on Industrial Electronics & Applications 2021, pp. 1-6, 2021, DOI: 10.1109/ISIEA51897.2021.9509985
  • J. D. Acheme, and O. R. Vincent, “Machine-learning models for predicting survivability in COVID-19 patients,” Data Science for COVID-19, vol. 2021, pp. 317-336, 2021, DOI: 10.1016/B978-0-12-824536-1.00011-3
  • M. Shanbehzadeh, R. Nopour, and U. Kazemi-Arpanahi, “Using decision tree algorithms for estimating ICU admission of COVID-19 patients,” Informatics in Medicine Unlocked, vol. 30, Article no. 100919, 2022, DOI: 10.1016/j.imu.2022.100919
  • Cevik, S. Angco, E. Heydarigharaei, H. Jahanshahi and N. Prayogo, “N. Active learning for multi-way sensitivity analysis with application to disease screening modeling’, Journal of Healthcare Informatics, vol. 6, pp. 317–343, 2022, DOI: 10.1007/s41666-022-00117-y
  • R. Priyanka, and L. Shahram, “Prediction of diabetes using logistic regression and ensemble techniques,” Computer Methods and Programs in Biomedicine, vol. 1, Article no. 100032, 2021, DOI: 10.1016/j.cmpbup.2021.100032
  • S. Deepti, and S. Dilip Singh, “Prediction of diabetes using classification algorithms,” Procedia Computer Science, vol. 132, pp. 1578–1585, 2018, DOI: 10.1016/j.procs.2018.05.122
  • Q. Zou, K. Qu, Y. Luo, D. Yin, Y. Ju, and H. Tang, “Predicting diabetes mellitus with machine learning techniques,” Frontiers in Genetics, vol. 9, Article no. 515, 2018, DOI: 10.3389/fgene.2018.00515
  • S. Jayakumar, V. Muthukumaran, J. Thimmia Raja, R. B. Joseph, M. Munirathanam, J. B. Balajee, “Diabetes disease prediction using decision tree for feature selection,” Journal of Physics: Conference Series, vol. 1964, Article no. 062116, 2021, DOI: 10.1088/1742-6596/1964/6/062116
  • N. Nai-arun and R. Moungmai, “Diagnostic Prediction Models for Cardiovascular Disease Risk using Data Mining Techniques”, ECTI-CIT Transactions, vol. 14, no. 2, pp. 113–121, 2020, DOI: 10.37936/ecti-cit.2020142.199897M.
  • T. M. Alam, M. F. Iqbal, Y. Ali, A. Wahab, S. Ijaz, T. I. Baig, A. Hussain, M. A. Malik, M. M. Raza, S. Ibrar, and Z. Abbas, “A model for early prediction of diabetes,” Informatics in Medicine Unlocked, vol. 16, Article no. 100204, 2019, DOI: 10.1016/j.imu.2019.100204.
  • K. Vijiya Kumar, B. Lavanya, I Nirmala, and S. S. Caroline, “Random forest algorithm for the prediction of diabetes,” in IEEE International Conference on System, Computation, Automation and Networking - 2019, pp. 1-5, 2019, DOI: 10.1109/ICSCAN.2019.8878802.
  • G. Shanmugasundar, M. Vanitha, R. Cep, V. Kumar, K. Kalita, and M. A. Ramachandran, “Comparative study of linear, random forest and adaboost regressions for modeling non-traditional machining,” Processes, vol. 9, Article no. 2015, 2021, DOI: 10.3390/pr9112015S.
  • B. Kotsiantis, “Supervised machine learning: a review of classification techniques,” Informatica, vol. 31, pp. 249-268, 2007, DOI: 10.1115/1.1559160.
  • L. Smith, and C. Lamprecht, "Identifying the limitations associated with machine learning techniques in performing accounting tasks," Journal of Financial Reporting and Accounting, vol. 22, no. 2, pp. 227-253, 2024, DOI: 10.1108/JFRA-05-2023-0280
  • P. Pitchipoo, P. Venkumar, and S. Rajakarunakaran, “Grey decision model for supplier evaluation and selection in process industry: a comparative perspective,” The International Journal of Advanced Manufacturing Technology, vol.76, pp. 2059–2069, 2015, DOI: 10.1007/s00170-014-6406-2
  • J. L. Deng, “Introduction to grey system,” Journal of Grey Systems, vol. 1, no. 1, pp. 1-24, 1989
Еще
Статья научная