Распознавание оттенка цветовой метки на основе нечёткой кластеризации

Автор: Максим Владимирович Бобырь, Александр Евгеньевич Архипов, Алексей Сергеевич Якушев

Журнал: Информатика и автоматизация (Труды СПИИРАН).

Рубрика: Искусственный интеллект, инженерия данных и знаний

Статья в выпуске: Том 20 № 2, 2021 года.

Бесплатный доступ

Рассматривается задача определения текущего положения пневматических исполнительных механизмов. Решение поставленной задачи достигается введением системы технического зрения, позволяющей на основе метода нечеткой кластеризации определять в режиме реального времени координаты центра цветовой метки, установленной на исполнительных механизмах мехатронного комплекса и позицию её смещения. Целью работы является повышение точности распознавания цветовой метки для прецизионного позиционирования исполнительных механизмов мехатронного комплекса и повышение быстродействия дефаззификатора за счет распараллеливания вычислительных процедур в нем. Интеллектуализация процесса распознавания цветового оттенка производится на основе нечёткой кластеризации. Сначала строится нечеткая модель, позволяющая в зависимости от входных параметров интенсивности цвета по каждому из каналов RGB и составляющей цветового тона выделять на изображении заданный цвет. Затем осуществляется бинаризация цветного изображения и подавление шумов. При моделировании нечеткой системы авторами были применены две модели дефаззификации: на основе метода центра тяжести и на основе отношения площадей. Модель, реализованная на основе метода отношения площадей, позволяет убрать зоны нечувствительности, которые присутствуют в модели центра тяжести. Метод на основе отношения площадей определяет принадлежность пикселей к заданному цветовому тону, и после этого расположение цветовой метки в кадре изображения определяется на основе определения центра тяжести распознанных пикселей цветовой метки. В последующем, при перемещении исполнительного механизма в продольном направлении, система технического зрения определяет расположение цветовой метки в новом кадре. Разность положений цветовой метки на исходном и текущем изображениях позволяет определить расстояние смещения цветовой метки. С целью исследования влияния шума на точность распознавания были использованы цифровые фильтры: медианный, Гауссовский, матричный и биноминальный. Анализ точности данных фильтров показал, что лучший результат получен при использовании Гауссовского фильтра. Оценка производилась на основе показателя сигнал-шум. Реализация математической модели распознавания цветовой метки выполнена в среде Matlab/Simulink. Экспериментальные исследования работоспособности системы технического зрения с предложенной нечёткой моделью кластеризации проводились на пневматическом мехатронном комплексе. В ходе экспериментов на корпусе цилиндра закреплялась цветовая метка, после чего цилиндр перемещался по направляющим в продольном направлении. В процессе перемещения выполнялась видеофиксация и распознавание изображений. Для определения точности распознавания цветовой метки рассчитаны коэффициенты PSNR и RMSE, которые составили 38,21 и 3,14 соответственно. Точность определения смещения на основе разработанной модели распознавания цветовых меток достигла 99,7%. Быстродействие дефаззификатора увеличилось до 590 нс.

Еще

Нечёткая кластеризация, распознавание цветового оттенка, нечёткая логика, RMSE, PSNR, MAPE

Короткий адрес: https://sciup.org/14127322

IDR: 14127322   |   DOI: 10.15622/ia.2021.20.2.6

Статья