Распространение электромагнитных ТЕ- и ТМ-волн в плоском волноводе, покрытом графеном, с учетом нелинейности

Автор: Смирнов Ю.Г., Тихов С.В.

Журнал: Физика волновых процессов и радиотехнические системы @journal-pwp

Статья в выпуске: 4 т.26, 2023 года.

Бесплатный доступ

Обоснование. Волноводные свойства различных структур с графеном имеют большое значение для практических приложений и изучались во многих работах. Во всех таких исследованиях графен характеризовался, как правило, линейной поверхностной проводимостью. Однако если интенсивность электромагнитной волны велика, то взаимодействие графена с ней становится нелинейным; в этом случае графен более корректно описывать нелинейной проводимостью.

Электромагнитные волны, диэлектрический волновод, плоский слой, графен, нелинейная проводимость, уравнения максвелла, дисперсионное уравнение

Короткий адрес: https://sciup.org/140303639

IDR: 140303639   |   DOI: 10.18469/1810-3189.2023.26.4.68-77

Список литературы Распространение электромагнитных ТЕ- и ТМ-волн в плоском волноводе, покрытом графеном, с учетом нелинейности

  • Geim A.K., Novoselov K.S. The rise of graphene // Nature Materials. 2007. Vol. 6, no. 6. P. 183–191. DOI: https://doi.org/10.1038/nmat1849
  • The electronic properties of graphene / A.H. Castro Neto [et al.] // Reviews of modern physics. 2009. Vol. 81, no. 1. P. 109–162. DOI: https://doi.org/10.1103/RevModPhys.81.109
  • Graphene-integrated waveguides: Properties, preparation, and applications / K. Chang [et al.] // Nano Research. 2022. Vol. 15, no. 11. P. 9704–9726. DOI: https://doi.org/10.1007/s12274-022-4539-4
  • Ultralow loss graphene-based hybrid plasmonic waveguide with deep-subwavelength confinement / X. He [et al.] // Optics Express. 2018. Vol. 26, no. 8. P. 10109–10118. DOI: https://doi.org/10.1364/OE.26.010109
  • Huang C., Huang C. Terahertz waveguides by coupling plasmon polaritons of cylindrical metal wires and a graphene-embedded slot waveguide // Advanced Photonics Research. 2023. Vol. 4, no. 3. P. 2200287. DOI: https://doi.org/10.1002/adpr.202200287
  • Mikhailov S.A. Non-linear electromagnetic response of graphene // Europhysics Letters. 2007. Vol. 79, no. 2. P. 27002. DOI: https://doi.org/10.1209/0295-5075/79/27002
  • Mikhailov S.A., Ziegler K. Nonlinear electromagnetic response of graphene: frequency multiplication and self-consistent field effects // Journal of Physics: Condensed Matter. 2008. Vol. 20, no. 38. P. 384204. DOI: https://doi.org/10.1088/0953-8984/20/38/384204
  • High-field terahertz response of graphene / M.J. Paul [et al.] // New Journal of Physics. 2013. Vol. 15, no. 8. P. 085019. DOI: https://doi.org/10.1088/1367-2630/15/8/085019
  • Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions / H.A. Hafez [et al.] // Nature. 2018. Vol. 561, no. 7724. P. 507–511. DOI: https://doi.org/10.1038/s41586-018-0508-1
  • Graphene surface plasmon polaritons with opposite in-plane electron oscillations along its two surfaces / L. Huawei [et al.] // Applied Physics Letter. 2015. Vol. 107, no. 9. P. 091602. DOI: https://doi.org/10.1063/1.4929886
  • Choon How G., Hong Son C., Er Ping L. Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies // Physical Review B. 2012. Vol. 85, no. 12. P. 125431. DOI: https://doi.org/10.1103/PhysRevB.85.125431
  • Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices / B. Zhu [et al.] // Optics Express. 2013. Vol. 21, no. 14. P. 17089–17096. DOI: https://doi.org/10.1364/OE.21.017089
  • Voltage-controlled surface plasmon-polaritons in double graphene layer structures / D. Svintsov [et al.] // Journal of Applied Physics. 2013. Vol. 113, no. 5. P. 053701. DOI: https://doi.org/10.1063/1.4789818
  • Belonenko M.B., Lebedev N.G., Yanyushkina N.N. Solitons in a system of coupled graphene waveguides // Physics of the Solid State. 2012. Vol. 54, no. 1. P. 174–177. DOI: https://doi.org/10.1134/S1063783412010052
  • Plasmons in waveguide structures formed by two graphene layers / P.I. Buslaev [et al.] // JETP Letters. 2013. Vol. 97, no. 9. P. 535–539. DOI: https://doi.org/10.1134/S0021364013090063
  • Evseev D.A., Eliseeva S.V., Sementsov D.I. Waves in a plane graphene - dielectric waveguide structure // The European Physical Journal Applied Physics. 2017. Vol. 80, no. 1. P. 10501. DOI: https://doi.org/10.1051/epjap/2017170167
  • Hanson G.W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene // Journal of Applied Physics. 2008. Vol. 103, no. 6. P. 064302. DOI: https://doi.org/10.1063/1.2891452
  • Falkovsky L.A. Optical properties of graphene // Journal of Physics: Conference Series. 2008. Vol. 129, no. 1. P. 012004. DOI: https://doi.org/10.1088/1742-6596/129/1/012004
  • Carrier relaxation in epitaxial graphene photoexcited near the Dirac point / S. Winnerl [et al.] // Physical Review Letters. 2011. Vol. 107, no. 23. P. 237401. DOI: https://doi.org/10.1103/PhysRevLett.107.237401
  • Cheng J.L., Vermeulen N., Sipe J.E. Third order optical nonlinearity of graphene // New Journal of Physics. 2014. Vol. 16, no. 5. P. 053014. DOI: https://doi.org/10.1088/1367-2630/16/5/053014
  • Smirnov Y., Tikhov S. The nonlinear eigenvalue problem of electromagnetic wave propagation in a dielectric layer covered with graphene // Photonics. 2023. Vol. 10, no. 5. P. 523. DOI: https://doi.org/10.3390/photonics10050523
  • Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation / C. Ronne [et al.] // The Journal of Chemical Physics. 1997. Vol. 107, no. 14. P. 5319–5331. DOI: https://doi.org/10.1063/1.474242
  • Temperature-dependent refractive index of quartz at terahertz frequencies / C.L. Davies [et al.] // Journal of Infrared, Millimeter, and Terahertz Waves. 2018. Vol. 39, no. 12. P. 1236–1248. DOI: https://doi.org/10.1007/s10762-018-0538-7
  • Graphene-based devices in terahertz science and technology / T. Otsuji [et al.] // Journal of Physics D: Applied Physics. 2012. Vol. 45, no. 30. P. 303001. DOI: https://doi.org/10.1088/0022-3727/45/30/303001
Еще
Статья научная