Rayleigh waves in a rotating transversely isotropic materials

Автор: Rehman A., Khan A., Ali A.

Журнал: Техническая акустика @ejta

Статья в выпуске: т.7, 2007 года.

Бесплатный доступ

Rayleigh wave speed in a rotating transversely isotropic material is studied. Speed in some transversely isotropic materials is calculated by choosing an angular velocity. Rayleigh wave speed is also calculated in non-rotating medium. It is observed that rotational effect plays a significant role and increases the speed of Rayleigh waves.

Короткий адрес: https://sciup.org/14316086

IDR: 14316086

Список литературы Rayleigh waves in a rotating transversely isotropic materials

  • P. Chadwick. Wave propagation in a transversely isotropic elastic material. I. Homogenous plane waves. Proc. R. Soc. Lond. A422, 23-66 (1989).
  • F. Ahmad, A. Khan. Effect of rotation on wave propagation in a transversely isotropic elastic material. Mathematical Problems in Engineering Vol. 7, pp 147-154 (2001), Overseas Publishers Association, under Gordon and Breach Science Publishers.
  • J. M. Carcione, D. Kosloff. Wave Propagation simulation in an elastic anisotropic (transversely isotropic) solid. Quarterly J. Mech. App. Math. 41, 319-345 (1988).
  • Lord Rayleigh. On waves propagated along the plane surface of an elastic solid. Pro R. Soc. Lond., A 17, 4-11 (1885).
  • M. Rahman, J. R. Barber. Exact expressions for the roots of the secular equation for Rayleigh waves. ASME J. Appl. Mech., 62, 250-252 (1995).
  • D. Nkemizi. A new formula for the velocity of Rayleigh waves. Wave Motion, 26, 199-205 (1997).
  • D. Royer. A study of the secular equation for Rayleigh waves using the root locus method. Ultrasonics, 39, 223-225 (2001).
  • P. C. Vinh, R. W. Ogden. On formulas for the Rayleigh wave speed. Wave Motion 39, 191-197 (2004).
  • C. T. Ting, A unified formalism for electrostatics or steady state motion of compressible or incompressible anisotropic elastic materials. Int. J. Solids Structures, 39, 5427-5445, (2002).
  • M. Destrade. Rayleigh waves in symmetry planes of crystals: explicit secular equations and some explicit wave speeds. Mech. Materials, 35, 931-939 (2003).
  • W. Ogden, P. C. Vinh. On Rayleigh waves in incompressible orthotropic elast solids. J. Acoust. Soc. Am., 115, 530-533 (2004).
  • M. Destrade, P. A. Martin, C. T. Ting. The incompressible limit in linear anisotro elasticity, with applications to surface wave and electrostatics. J. Mech. Phys. Solid, 50, 1453-1468 (2002).
  • P. C. Vinh, R. W. Ogden. Formulas for the Rayleigh wave speed in orthotropic elastic solids. Arch. Mech., 56 (3), 247-265, Warszawa, 2004.
  • M. Schoenberg, D. Censor. Elastic waves in rotating media. Quarterly Appl. Math., 31, 115-125 (1973).
  • W. H. Cowles, J. E. Thompson. Algebra, Van Nostrand, New York 1947.
  • A. Rahman, F. Ahmad. Acoustic scattering by transversely isotropic cylinder. International Journal of Engineering Science, 38, 325-335 (2000).
Еще
Статья научная