Rayleigh waves in a rotating transversely isotropic materials

Автор: Rehman A., Khan A., Ali A.

Журнал: Техническая акустика @ejta

Статья в выпуске: т.7, 2007 года.

Бесплатный доступ

Rayleigh wave speed in a rotating transversely isotropic material is studied. Speed in some transversely isotropic materials is calculated by choosing an angular velocity. Rayleigh wave speed is also calculated in non-rotating medium. It is observed that rotational effect plays a significant role and increases the speed of Rayleigh waves.

Короткий адрес: https://sciup.org/14316086

IDR: 14316086

Текст научной статьи Rayleigh waves in a rotating transversely isotropic materials

Electronic Journal «Technical Acoustics»

Rayleigh waves in a rotating transversely isotropic materials

Received 22.10.2006, published 07.02.2007

Rayleigh wave speed in a rotating transversely isotropic material is studied. Speed in some transversely isotropic materials is calculated by choosing an angular velocity. Rayleigh wave speed is also calculated in non-rotating medium. It is observed that rotational effect plays a significant role and increases the speed of Rayleigh waves.

harmonic waves in x1 -direction in x1x3-plane with displacement components (u1,u2,u3) such that ui = ui(x1,x3,t),i = 1,3, u2 = 0.                                                                           (1)

Generalized Hooke’s law for transversely isotropic body may be written as

_ “1     C 11    C 12    c 13     0    0        0

& 11

_       C 12    C 11    с 13     0    0       0

& 22                    о   n      Л

_       C 13    C 13    c 33     0    0       0

& 33

= 0   0   0    c44    0      0

& 23         .      .      .

0    0    0    0    c44       0

& 13

0    0    0    0    0 c 11 - c 12

33    ,                                                 (2)

2 e 23

2 e 13

l 2 ^ 12 j

& 9     0   0   0   0   0

12 L                                    2 J

where e ij is the strain tensor such that

-= 2 ( u ij + u ji ) i , j = 1,2,3, (3) a is the stress tensor and c ii >0, i = 1, 3, 4; c 11 c 33 - c 13 2 0 which are the necessary and sufficient conditions for the strain energy of the material to be positive definite. By using the above equations one can write

& 11    c11u 1,1 + C 13 u 3,3 ,

& 33    C 13 u 1,1 + C 33 u 3,3 ,

a 13 = C 44( u 1,3 + u 3,1 ) •

When a homogeneous body is rotating with a constant angular velocity Q , it is observed that the rate of change of displacement vector u i with respect to time is ( u + Q x u ). In tensor notation this expression may be written as ( u i + £ ijk Q j u k ) where s jk is the Levi-Civita tensor. Similarly second derivative with respect to time of ui becomes (see [14]) u i + Q juj Q i -Q 2 u i + 2 £ jk Q jiuk . Thus equation of motion & ij j = p u i in the absence of body forces in a rotating medium can be written as follows (see [14]).

& jj = p { u -H u Q Q u + 2 j Q u k } , (5)

where Q = Q (0, 0, 1).

The equations of motion (5) in component form can be written as

& 11,1 + & 13,3 = p ( u 1    Q u 1 ),

& 31,1 + & 33,3 = p u 3

In view of (4) Eq. (6) can be written as

C 11 u 1,11 + C 13 u 3,31 + C 44 ( u 1,33 + u 3,13 ) = p ( u 1    Q u 1 ) ,

C44( u 1,31 + u 3,11 ) + C 13 u 1,13 + C33 u 3,33 = P u 3 .

The boundary conditions of zero traction are

σ 3 i = 0, i = 1,3 on the plane x 3 = 0.

Usual requirements that the displacements and the stress components decay away from the boundary implies

ui 0,     σ ij 0( i , j = 1,3) asx 3 →-∞ .

Considering the harmonic waves propagating in x 1 -direction, by following Pham & Ogden [13] we write

uj = φ j ( y )exp[ ik ( x 1 - ct )]; j = 1, 3.

In the above equation, k is the wave number, c is the wave speed and y = kx 3 ; φ j , j = 1, 3 are the functions to be determined. Substituting (10) into (7) implies

c 44 k Ф + ik 2( c 44 + c 13 ) ф‘ + { k 2 ( pp c 2 - c „) + &2ф = 0 , c 33 φ 3 ′′ + i ( c 44 + c 13 ) φ 1 ′ + ( ρ c 2 - c 44 ) φ 3 = 0.

The boundary condition (8) by using (4) and (10) can be written as follows:

ic 13 φ 1 + c 33 φ 3 ′ = 0,

φ 1 ′ + i φ 3 = 0 on the plane y = 0,

while from (9)

φ j , φ j 0 as y → -∞ , j = 1,3 .                                                      (13)

Taking Laplace transform of (11) by using (12)

{k2(c44s2+ρc2-c11)+ρΩ2}φ1(s)+ik2(c44 +c13)sφ3(s)= c44k2{sφ1(0) +φ1′(0)}+ ik2(c44+ c13)φ3(0)                                                       (14)

i ( c 13 + c 44 ) s ф 1 ( s ) + ( c 3 3 s 2 - c 44 + P c 2 ) ф 3 ( s ) = i ( c 44 + c 13 ) ф 1 (0) + c 3 3 { ф 3 (0) s + ф 3 (0)}

This implies

c 44 k 2( s φ 1 (0) + φ 1 (0)) + ik 2( c 44 + c 13 ) φ 3 (0)      ik 2( c 44 + c 13 ) s

ϕ 1( s ) =

i ( c 44 + c 13) φ 1(0) + c 33( φ 3(0) s + φ 3 (0))      ( c 33 s 2 - c 44 + ρ c 2)

k 2 c 33 c 44 s 4 + [ k 2{( c 44 + c 13)2 + c 33( ρ c 2 - c 11) + c 44( ρ c 2 - c 44)} + ρ Ω 2 c 33)] s 2

+ ( ρ c 2 - c 44){ k 2( ρ c 2 - c 11) + ρ Ω 2}

Let s 1 2, s 2 2 be the roots (having real parts positive) of denominator of (15). This implies

AAA φ 1 ( s ) =   1 + 2 + 3

s - s 1 s - s 2 s + s 1

+ A 4

s + s 2

where A1, A2, A3, A4 are the constants to be determined. Taking inverse Laplace transform and applying (13), implies ф1(y) = Ai exP(s 1 y) + A2 exP(s2 y).

In view of (11), (13) and (17)

ф 3 ( y ) = a 1 A 1 exp( s 1 y ) + a 2 A 2 exp( s 2 y ),

where a j =

i [ c 44 k 2 s2 + k 2( p c 2 - c 11 ) + p Q 2

k ( c 44 + c 13 ) s j

, j = 1,2.

Let s 12 ,

s 22 be the roots of the denominator of (15), thus we can write

2      2

s 2 + s 2

2 2   ( pc s1 s 2 =-----

[ k {(c 44 + c13) + c 33 (Pc    c 11) + c 44 (Pc k c33c44

~ c 44 )[ k 2( P c 2 - c 11 ) + P Q 2 ]

c 44)} + p Q 2 c 33 ]

,

2 c 33 c 44

.

Substituting ф ( y ) and ф 3( y ) from equations (17) and (18) into (12), we get

( ic 13 + c33 a 1 s 1 ) A 1 + ( ic13 + c33 a 2 s 2 ) A 2 = 0, ( s 1 + i a 1 ) A 1 + ( s 2 + i a 2 ) A 2 = 0.

For non trivial solution of above linear homogeneous system of equations, the determinant of coefficients must be vanished i.e.

( ic 13 + c 33 a 1 s 1 )( s 2 + i a 2 ) - ( ic13 + c 33 a 2 s 2 )( s 1 + i a 1 ) = 0.

Simplifying and making the use of (18) and (19)

(pc2 -c44Xk2c132 + cзз{k2(pc2 -cn) + pQ2}]- kpc yjc33c44 {k (pc   c11) + pQ } (pc   c44) = 0, which may be written as pc 2

c33      c11

c 44 p c 2  1

1 + c11

2 c 13

c 11 c 33

pc2  ,  p Q 2

+        1 +      2

c 11         c 11 k

pc- = 0.

c 11

T ,      pc 2         c 44   ,     c 44

Let u =     , a = 44 , b = 44 , p = c11         c33          c11

2 c 13

c 11 c 33

p Q 2 k 2 c 11

- 1, therefore above equation becomes

( 1 - a ) u 3 +{ 2 p - b + ( 2 - a ) r } u 2 + ( p + r )( p + r - 2 b ) u - b ( p + r ) 2 = 0 .

This can be solved for u for different materials and for different values of angular velocities by Cardado’s rule (see Cowles and Thompson [15]). Also one can solve it by numerical methods or simply by using computer software MATHEMATICA or MATLAB.

3. RAYLEIGH WAVES SPEED IN SOME TRANSVERSELY ISOTROPIC MATERIALS FOR AN ANGULAR VELOCITY

^ 2 Си

If we choose, say I I = —11 , then above equation (21) becomes

к k J P

( 1 - a ) u 3 + ( 2 p - b ) u 2 + p ( p - 2 b ) u - bp 2 = 0                                            (22)

and can be solved for u for different materials as follows.

For an example we choose Cadmium. Stiffness elastic constants for Cadmium are (see

Rahman and Ahmad [16]) as follows:

c11 = 1.16 x 1011 N/m2, c13 = 0.41 x 1011 N/m2, c33 = 0.509 x 1011 N/m2, c44 = 0.196 x 1011 N/m2, a = -44 = 0.385069,   b = -44- = 0.168966, p =      = 0.284703, r = 0.

c 33                              c 11                             c 11 c 33

Substituting the values of a , b , p and r in equation(22) we get

0.61493 u 3 – 0.40044 u 2 – 0.0151545 u – 0.136957 = 0.                               (23)

This implies u = 0.459112, therefore c = 2482.45 m/s.

Similarly we can determine speed c for other transversely isotropic materials as is evident from the following table.

Table 1. For rotating materials

Material

Stiffness ×1011 N/m2

u

Density kg/m3, P

Rayleigh wave speed, m/s

c 11

c 12

c 13

c 33

c 44

Cadmium

1.16

0.42

0.41

0.509

0.196

0.459112

8642

2482.45

Cobalt

2.59

1.59

1.11

3.35

0.71

0.264378

8900

2773.75

Titanium boride

6.90

4.10

3.20

4.40

2.50

0.443684

4500

8249.12

Zinc

1.628

0.362

0.508

0.627

0.385

0.321827

7140

2708.88

Magnesium

0.5974

0.2624

0.217

0.617

0.1639

0.296935

1740

3299.80

If we choose Q = 0 (non-rotating case), then the above equation (21) becomes

(1 - a ) u 3 + { a - 2(1 - p ) - b } u 2 + {(1 - p )2 + 2 b (1 - p )} u - b (1 - p )2 = 0.

In the following table Rayleigh wave speed in non-rotating transversely isotropic materials is calculated.

Table 2. For non-rotating materials

Material

Cobalt

Cadmium

Titanium boride

Zinc

Magnesium

Rayleigh wave speed, m/s

2685.55

1404.77

5983.28

2045.01

2894.65

CONCLUSIONS

Above results showed that rotational effect plays a significant role and increases the speed of the Rayleigh waves for a finite angular velocity of the materials.

Список литературы Rayleigh waves in a rotating transversely isotropic materials

  • P. Chadwick. Wave propagation in a transversely isotropic elastic material. I. Homogenous plane waves. Proc. R. Soc. Lond. A422, 23-66 (1989).
  • F. Ahmad, A. Khan. Effect of rotation on wave propagation in a transversely isotropic elastic material. Mathematical Problems in Engineering Vol. 7, pp 147-154 (2001), Overseas Publishers Association, under Gordon and Breach Science Publishers.
  • J. M. Carcione, D. Kosloff. Wave Propagation simulation in an elastic anisotropic (transversely isotropic) solid. Quarterly J. Mech. App. Math. 41, 319-345 (1988).
  • Lord Rayleigh. On waves propagated along the plane surface of an elastic solid. Pro R. Soc. Lond., A 17, 4-11 (1885).
  • M. Rahman, J. R. Barber. Exact expressions for the roots of the secular equation for Rayleigh waves. ASME J. Appl. Mech., 62, 250-252 (1995).
  • D. Nkemizi. A new formula for the velocity of Rayleigh waves. Wave Motion, 26, 199-205 (1997).
  • D. Royer. A study of the secular equation for Rayleigh waves using the root locus method. Ultrasonics, 39, 223-225 (2001).
  • P. C. Vinh, R. W. Ogden. On formulas for the Rayleigh wave speed. Wave Motion 39, 191-197 (2004).
  • C. T. Ting, A unified formalism for electrostatics or steady state motion of compressible or incompressible anisotropic elastic materials. Int. J. Solids Structures, 39, 5427-5445, (2002).
  • M. Destrade. Rayleigh waves in symmetry planes of crystals: explicit secular equations and some explicit wave speeds. Mech. Materials, 35, 931-939 (2003).
  • W. Ogden, P. C. Vinh. On Rayleigh waves in incompressible orthotropic elast solids. J. Acoust. Soc. Am., 115, 530-533 (2004).
  • M. Destrade, P. A. Martin, C. T. Ting. The incompressible limit in linear anisotro elasticity, with applications to surface wave and electrostatics. J. Mech. Phys. Solid, 50, 1453-1468 (2002).
  • P. C. Vinh, R. W. Ogden. Formulas for the Rayleigh wave speed in orthotropic elastic solids. Arch. Mech., 56 (3), 247-265, Warszawa, 2004.
  • M. Schoenberg, D. Censor. Elastic waves in rotating media. Quarterly Appl. Math., 31, 115-125 (1973).
  • W. H. Cowles, J. E. Thompson. Algebra, Van Nostrand, New York 1947.
  • A. Rahman, F. Ahmad. Acoustic scattering by transversely isotropic cylinder. International Journal of Engineering Science, 38, 325-335 (2000).
Еще
Статья научная