Benenti-Francaviglia separability and Petrov types
Автор: Galtsov D.V., Kulitskii A.V.
Журнал: Пространство, время и фундаментальные взаимодействия @stfi
Статья в выпуске: 1 (42), 2023 года.
Бесплатный доступ
Benenti and Francavilla (BF) proposed a class of metrics with two commuting Killing vectors for which there exists an irreducible Killing tensor of the second rank and the geodesic equations are integrable. This class admits a non-trivial Ricci tensor and generically is not algebraically special. We find an additional condition on the BF class, under which the metrics admit isotropic geodesic and shear-free congruences, and belong either to the general Petrov type I or to type D, but not to type II. The corresponding Killing tensors have only two nonzero Newman-Penrose projections. This subclass includes black holes with the Newman-Unti-Tamburino (NUT) parameter, in the = 4 supergravity.
Black holes, killing tensors, petrov type, newman-penrose formalism
Короткий адрес: https://sciup.org/142237730
IDR: 142237730 | DOI: 10.17238/issn2226-8812.2023.1.31-35