Whitney decomposition, embedding theorems, and interpolation in weighted spaces of analytic functions
Автор: Shamoyan Faizo A., Tasoeva Ekaterina V.
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 1 т.21, 2019 года.
Бесплатный доступ
According to the classical Whitney theorem, each open set on the plane can be decomposed as a union of special squares whose interiors do not intersect. In the paper, using the properties of Whitney squares, a new concept is introduced. For each center ak of the Whitney square, there is a point a∗k∈C∖G such that the distance to the boundary of the open set G is between two constants, regardless of k. In particular, a necessary and sufficient condition for a sequence (zk)∞1⊂G under which the operator R(f)=(f(z1),f(z2),…,f(zn),…) maps generalized Nevanlinna's flat classes in a domain G of a complex plane in lp.
Короткий адрес: https://sciup.org/143168791
IDR: 143168791 | DOI: 10.23671/VNC.2019.1.27734