Развитие теории оптимальных динамических измерений

Автор: Бычков Евгений Викторович, Загребина Софья Александровна, Замышляева Алена Александровна, Келлер Алевтина Викторовна, Манакова Наталья Александровна, Сагадеева Минзиля Алмасовна, Свиридюк Георгий Анатольевич

Журнал: Вестник Южно-Уральского государственного университета. Серия: Математическое моделирование и программирование @vestnik-susu-mmp

Рубрика: Обзорные статьи

Статья в выпуске: 3 т.15, 2022 года.

Бесплатный доступ

В работе представлен обзор результатов как аналитического исследования задач оптимального динамического измерения, так и результатов в области разработки алгоритмов численных методов для решения задач теории оптимальных динамических измерений. Основным положением теории оптимальных динамических измерений является моделирование искомого входящего сигнала как решения задачи оптимального управления с минимизацией функционал штрафа, в котором оценивается расхождение выходящих моделируемого и наблюдаемого сигналов. Данная теория появилась как новый подход для восстановления динамически искаженных сигналов. Математическая модель сложного измерительного устройства построена как система леонтьевского типа, начальное состояние которой отражает условие Шоуолтера - Сидорова. Первоначально математическая модель учитывала только инерционность устройства измерения, позже математическая модель стала учитывать возникающие в измерительном устройстве резонансы и деградацию устройства с течением времени. Последние результаты учитывают случайные помехи, и уже здесь сложилось несколько подходов: первый подход основан на производной Нельсона - Гликлиха, второй - на очищении наблюдаемого сигнала по методу Пытьева - Чуличкова, третий - на очищении наблюдаемого сигнала с использованием цифровых фильтров, например, Савицкого - Голея или одномерного фильтра Калмана.

Еще

Математическая модель измерительного устройства, система леонтьевского типа, условия шоуолтера - сидорова, производная нельсона - гликлиха, винеровский процесс, оптимальное динамическое измерение, наблюдение, метод пытьева - чуличкова

Короткий адрес: https://sciup.org/147238553

IDR: 147238553   |   DOI: 10.14529/mmp220302

Список литературы Развитие теории оптимальных динамических измерений

  • Belov A.A., Andrianova O.G., Kurdyukov A.P. Control of Discrete-Time Descriptor Systems. Cham, Springer, 2018. DOI: 10.1007/978-3-319-78479-3
  • Boyarintsev Yu.E., Chistyakov V.F. Algebro-differencial'nye sistemy: metody resheniya i issledovaniya [Differential-Algebraic Systems: Methods of Solution and Research]. Novosibirsk, Nauka, 1998. (in Russian)
  • Demin D.S., Chulichkov A.I. Filtering of Monotonic Convex Noise-Distorted Signals and Estimates of Positions of Special Points. Fundamentalnaya i prikladnaya matematika, 2009, vol. 15, no. 6, pp. 15-31. (in Russian)
  • DeRusso P.M., Roy R.J., Close C.M. State Variables for Engineers. New York, Chichester, Brisbane, Toronto, John Wiley & Sons, 1997.
  • Einstein A., Smoluchowski M. Brounovskoe dvizhenie [Brownian Motion]. Moscow, Fizmatlit, 1936. (in Russian)
  • Favini A., Sviridyuk G.A., Manakova N.A. Linear Sobolev Type Equations with Relatively p-Sectorial Operators in Space of «Noises>. Abstract and Applied Analysis, 2016, vol. 13, pp. 1-8. DOI: 10.1155/2015/697410
  • Favini A., Sviridyuk G.A., Sagadeeva M.A. Linear Sobolev Type Equations with Relatively p-Radial Operators in Space of «Noises>. Mediterranean Journal of Mathematics, 2016, vol. 13, no. 6, pp. 4607-4621. DOI: 10.1007/s00009-016-0765-x
  • Gliklikh Yu.E., Makarova A.V. On Existence of Solutions to Stochastic Differential Inclusions with Current Velocities II. Journal of Computational and Engineering Mathematics, 2016, vol. 3, no. 1, pp. 48-60. DOI: 10.14529/jcem160106
  • Granovskii V.A. Dinamicheskie izmereniya. Osnovy metrologicheskogo obespecheniya [Dynamic Measurements. Fundamentals of Metrology Provision]. Leningrad, Energoatomizdat, 1984. (in Russian)
  • Keller A.V. [Leontief Type Systems: Classes of Problems with Showalter-Sidorov Initial Condition and Numerical Solutions]. The Bulletin of Irkutsk State University. Series: Mathematics, 2010, vol. 3, no. 2, pp. 30-43. (in Russian)
  • Keller A.V. Leontief-type Systems and Applied Problems. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2022, vol. 15, no. 1. pp. 23-42. (in Russian) DOI: 10.14529/mmp220102
  • Keller A.V. Numerical Solution of the Optimal Control Problem for Degenerate Linear System of Equations with Showalter-Sidorov Initial Conditions. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2008, no. 27 (127), issue 2, pp. 50-56.
  • Keller A.V. On the Computational Efficiency of the Algorithm of the Numerical Solution of Optimal Control Problems for Models of Leontieff Type. Journal of Computational and Engineering Mathematics, 2015, vol. 2, no. 2, pp. 39-59. DOI: 10.14529/jcem150205
  • Keller A.V. Optimal Dynamic Measurement Method Using the Savitsky-Golay Digital Filter. Differential Equations and Control Processes, 2021, no. 1, pp. 1-15.
  • Keller A.V., Sagadeeva M.A. Convergence of the Spline Method for Solving the Optimal Dynamic Measurement Problem. Journal of Physics: Conference Series, 2021, article ID: 012074. DOI: 10.1088/1742-6596/1864/1/012074
  • Keller A.V., Sagadeeva M.A. The Optimal Measurement Problem for the Measurement Transducer Model with a Deterministic Multiplicative Effect and Inertia. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2014, vol. 7, no. 1, pp. 134-138. (in Russian) DOI: 10.14529/mmp140111
  • Keller A.V., Shestakov A.L., Sviridyuk G.A., Khudyakov Y.V. The Numerical Algorithms for the Measurement of the Deterministic and Stochastic Signals. Springer Proceedings in Mathematics and Statistics, 2015, vol. 113, pp. 183-195. DOI: 10.1007/978-3-319-12145-1_11
  • Khudyakov Y.V. Parallelization of Algorithms for the Solution of Optimal Measurements in View of Resonances. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2013, vol. 6, no. 4, pp. 122-127. (in Russian)
  • Khudyakov Yu.V. On Adequacy of the Mathematical Model of the Optimal Dynamic Measurement. Journal of Computational and Engineering Mathematics, 2017, vol. 4, no. 2, pp. 14-25. DOI: 10.14529/jcem170202
  • Nelson E. Dynamical Theory of Brownian Motion. Princeton, Princeton University Press, 1967.
  • Pyt'ev Yu.P., Chulichkov A.I. Metody morfologicheskogo analiza izobrazheniy [Methods of Morphological Analysis of Pictures]. Moscow, FizMatLit, 2010. (in Russian)
  • Sagadeeva M.A. Construction an Observation in the Shestakov-Sviridyuk Model in Terms of Multidimensional White Noises Distortion. Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 2020, vol. 12, no. 4, pp. 41-50. (in Russian) DOI: 10.14529/mmph200405
  • Sagadeeva M.A. Mathematical Bases of Optimal Measurements Theory in Nonstationary Case. Journal of Computational and Engineering Mathematics, 2016, vol. 3, no. 3, pp. 19-32. DOI: 10.14529/jcem160303
  • Sagadeeva M.A. Reconstruction of Observation from Distorted Data for the Optimal Dynamic Measurement Problem. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2019, vol. 12, no. 2, pp. 82-96. (in Russian) DOI: 10.14529/mmp190207
  • Sagadeeva M.A., Bychkov E.V., Tsyplenkova O.N. The Pyt'ev-Chulichkov Method for Constructing a Measurement in the Shestakov-Sviridyuk Model. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2020, vol. 13, no. 4, pp. 81-93. DOI: 10.14529/mmp200407
  • Savitzky A., Golay M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 1964, vol. 36, no. 8, pp. 1627-1639. DOI: 10.1021/ac60214a047
  • Shestakov A.L. [Dynamic Precision of the Measuring Transducer with a Corrector in the Form of Sensor Model]. Metrologiya [Metrology], 1987, no. 2, pp. 26-34. (in Russian)
  • Shestakov A.L., Keller A.V. One-Dimensional Kalman Filter in Algorithms for Numerical Solution of the Problem of Optimal Dynamic Measurement. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2021, vol. 14, no. 4, pp. 120-125. (in Russian) DOI: 10.14529/mmp210411
  • Shestakov A.L., Keller A.V. Optimal Dynamic Measurement Method Using Digital Moving Average Filter. Journal of Physics: Conference Series, 2021, vol. 1864, article ID: 012073. DOI: 10.1088/1742-6596/1864/1/012073
  • Shestakov A.L., Keller A.V., Nazarova E.I. Numerical Solution of the Optimal Measurement Problem. Automation and Remote Control, 2012, vol. 73, no. 1, pp. 97-104. DOI: 10.1134/S0005117912010079
  • Shestakov A.L., Sviridyuk G.A. A New Approach to Measurement Dynamically Perturbed Signals. Bulletin of the South Ural State University. Series: Mathematical Modeling and Programming, 2010, no. 16 (192), pp. 116-120. (in Russian)
  • Shestakov A.L., Sviridyuk G.A. On the Measurement of the «White Noise>. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2012, no. 27 (286), issue 13, pp. 99-108. (in Russian)
  • Shestakov A.L., Sviridyuk G.A., Keller A.V. Optimal Measurements. XXI IMEKO World Congress «Measurement in Research and Industry>, 2015, pp. 2072-2076.
  • Shestakov A.L., Sviridyuk G.A., Khudyukov Y.V. Dinamic Measurement in Spaces of «Noise>. Bulletin of the South Ural State University. Series: Computer Technologies. Automatic Control. Radioelectronics, 2013, vol. 13, no. 2, pp. 4-11. (in Russian)
  • Shestakov A.L., Zagrebina S.A., Manakova N.A., Sagadeeva M.A., Sviridyuk G.A. Numerical Optimal Measurement Algorithm under Distortions Caused by Inertia, Resonances, and Sensor Degradation. Automation and Remote Control, 2021, vol. 82, no. 1, pp. 41-50. DOI: 10.1134/S0005117921010021
  • Shestakov A.L., Zamyshlyaeva A.A., Manakova N.A., Sviridyuk G.A., Keller A.V. Reconstruction of a Dynamically Distorted Signal Based on the Theory of Optimal Dynamic Measurements. Automation and Remote Control, 2021, vol. 82, no. 12, pp. 2143—2154. DOI: 10.1134/S0005117921120067
  • Shestakov A.L., Sagadeeva M.A., Manakova N.A., Keller A.V., Zagrebina S.A., Zamyshlyaeva A.A., Sviridyuk G.A. Optimal Dynamic Measurements in Presence of the Random Interference. Journal of Physics: Conference Series, 2018, vol. 1065, no. 21, article ID: 212012. DOI: 10.1088/1742-6596/1065/21/212012
  • Shestakov A.L., Sviridyuk G.A. Optimal Measurement of Dynamically Distorted Signals. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2011, no. 17 (234), pp. 70-75.
  • Shestakov A.L., Keller A.V., Zamyshlyaeva A.A., Manakova N.A., Tsyplenkova O.N., Gavrilova O.V., Perevozchikova K.V. Restoration of Dynamically Distorted Signal Using the Theory of Optimal Dynamic Measurements and Digital Filtering. Measurement: Sensors, 2021, vol. 18, article ID: 100178. DOI: 10.1016/j.measen.2021.100178
  • Shestakov A.L., Keller A.V., Zamyshlyaeva A.A., Manakova N.A., Zagrebina S.A., Sviridyuk G.A. The Optimal Measurements Theory as a New Paradigm in the Metrology. Journal of Computational and Engineering Mathematics, 2020, vol. 7, no. 1, pp. 3-23. DOI: 10.14529/jcem200101
  • Shestakov A.L., Sviridyuk G.A., Keller A.V. The Theory of Optimal Measurements. Journal of Computational and Engineering Mathematics, 2014, vol. 1, no. 1, pp. 3-15.
  • Shestakov A.L., Sviridyuk G.A., Keller A.V., Zamyshlyaeva A.A., Khudyakov Y.V. Numerical Investigation of Optimal Dynamic Measurements. Acta IMEKO, 2018, vol. 7, no. 2, pp. 65-72. DOI: 10.21014/acta_imeko.v7i2.529
  • Shestakov A.L., Sviridyuk G.A., Khudyakov Y.V. Dynamical Measurements in the View of the Group Operators Theory. Springer Proceedings in Mathematics and Statistics, 2015, vol. 113, pp. 273-286. DOI: 10.1007/978-3-319-12145-1_17
  • Shestakov A.L., Zagrebina S.A., Sagadeeva M.A., Bychkov E.V., Solovyova N.N., Goncharov N.S., Sviridyuk G.A. A New Method for Studying the Problem of Optimal Dynamic Measurement in the Presence of Observation Interference. Measurement: Sensors, 2021, vol. 18, article ID: 100266. DOI: 10.1016/j.measen.2021.100266
  • Sviridyuk G.A., Efremov A.A. Optimal Control for a Class of Degenerate Linear Equations. Doklady Akademii nauk, 1999, vol. 364, no. 3, pp. 323-325.
  • Sviridyuk G.A., Keller A.V. On the the Numerical Solution Convergence of Optimal Control Problems for Leontief Type System. Journal of Samara State Technical University. Series: Physical and Mathematical Sciences, 2011, no. 2 (23), pp. 24-33. (in Russian)
  • Zamyshlyaeva A.A., Keller A.V., Syropiatov M.B. Stochastic Model of Optimal Dynamic Measurements. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2018, vol. 11, no. 2, pp. 147-153. DOI: 10.14529/mmp180212
Еще
Статья научная