Реализация методики коррекции прикуса человека
Автор: Никитин В.Н.
Журнал: Российский журнал биомеханики @journal-biomech
Статья в выпуске: 1 (71) т.20, 2016 года.
Бесплатный доступ
В работе анализируется методика коррекции прикуса с учетом количественных показателей состояния зубочелюстной системы человека. На основании алгоритма коррекции прикуса с учетом физиологических диапазонов нормальных значений стоматологических параметров, определяющих положение прикуса, проведен анализ влияния этих параметров на усилия жевательных мышц и реакцию височно-нижнечелюстного сустава. При увеличении угла ANB, отвечающего за передне-заднее положение нижней челюсти относительно черепа, величины усилий жевательных мышц и реакции височно-нижнечелюстного сустава практически линейно возрастают. Почти аналогичная картина зависимостей величин усилий жевательных мышц и реакции височно-нижнечелюстного сустава характерна для угла жевательной эффективности DoA за исключением правой границы нормальных физиологических значений, при которых величина усилия в передней медиальной крыловидной мышце и величина реакции височно-нижнечелюстного сустава начинает уменьшаться. Установлено также, что при увеличении угла наклона нижней челюсти FH-ML величины усилий жевательных мышц и реакция височно-нижнечелюстного сустава практически линейно убывают. В ходе анализа влияния точки приложения реакции височно-нижнечелюстного сустава, отвечающей за положение диска относительно суставных поверхностей мыщелка и височной кости, было получено, что при нахождении диска в физиологическом положении усилия жевательных мышц меняются незначительно, а при выходе из этого положения в переднее положение величины усилий в поверхностной и передней медиальной крыловидной мышцах, а также величина реакции височно-нижнечелюстного сустава резко начинают возрастать. Совместный учет влияния точки приложения реакции и стоматологических параметров в физиологических диапазонах их нормальных значений позволит, по мнению автора, уточнить прикус, выбранный стоматологом в рамках физиологических нормальных значений стоматологических параметров, чтобы при окончательной постановке прикуса ни одна из жевательных мышц не была перегружена по сравнению с другими, а также чтобы диск височно-нижнечелюстного сустава не был перегружен.
Зубочелюстная система человека, коррекция прикуса, усилия жевательных мышц, реакция височно-нижнечелюстного сустава, суставной диск, методика коррекции
Короткий адрес: https://sciup.org/146216193
IDR: 146216193 | DOI: 10.15593/RZhBiomeh/2016.1.04
Текст научной статьи Реализация методики коррекции прикуса человека
В данной статье приведены результаты реализации методики коррекции прикуса, учитывающей количественные показатели напряженности жевательных мышц [3, 5, 6, 10, 11, 16, 21, 24–26, 28–30]. Данная методика основана на задаче
Никитин Владислав Николаевич, старший преподаватель кафедры теоретической механики и биомеханики, Пермь управления коррекцией прикуса в рамках физиологического диапазона [6, 15, 33]. При коррекции прикуса, связанной с потерей зубов, повышенной стираемостью зубов, травмами и переломами челюстей, стоматолог опирается на свой опыт или использует методики, в основе которых заложены геометрические расчеты [32]. Прикус определяет нагружение всей нижней челюсти и височно-нижнечелюстных суставов [1, 7, 8, 11, 12, 13, 14, 39], поэтому необходимо биомеханическое сопровождение такой коррекции. Поставлена задача управления коррекцией прикуса, в которой при определяемых параметрах прикуса напряжения в дисках суставов и теле нижней челюсти не должны превышать заданных пределов для интенсивности напряжений [6, 9]. Напряжения и деформации в теле нижней челюсти и дисках определяются из решения двух задач теории упругости: для области нижней челюсти и области диска при центральной окклюзии при максимальном нагружении мышц. Точка приложения реакции сустава и положение диска в суставе определяются в нем по результатам магнитно-резонансной томографии [15, 20, 23, 33, 36]. Для определения напряженно-деформированного состояния челюстей и диска височно-нижнечелюстного сустава необходимо знать усилия в мышцах и реакцию височно-нижнечелюстного сустава, являющиеся граничными условиями для поставленных задач [9, 10]. Величины усилий мышц заведомо неизвестны [3, 25, 26, 29–31, 37, 38]. Усилия мышц определяются из решения задачи оптимизации, в которую входят уравнения статики нижней челюсти под действием заданной жевательной нагрузки и критерий оптимизации [9]. После вычисления усилий мышц и реакций в височно-нижнечелюстных суставах решается первоначальная задача определения напряженно-деформированного состояния нижней челюсти и диска [2, 17–19, 34–36]. Из сравнения напряжений с допустимыми вычисляются необходимые параметры [33], определяющие положение прикуса.
На рис. 1 и 2 приведены распределения интенсивностей напряжений в теле нижней челюсти и диске височно-нижнечелюстного сустава при физиологическом положении прикуса, полученных в программном пакете Ansys . Граничными условиями в задаче определения напряженно-деформированного состояния нижней челюсти являются усилия мышц и реакция височно-нижнечелюстного сустава, которые определяются благодаря решению минимаксной задачи [4, 9, 10]. В задаче об определении напряженно-деформированного состояния диска граничными условиями являются реакция височно-нижнечелюстного сустава и кинематические граничные условия на височной кости [17–19, 34–36].

Рис. 1. Интенсивность напряжений в мыщелке нижней челюсти, кПа

Рис. 2. Интенсивность напряжений в диске височно-нижнечелюстного сустава, кПа
Из результатов, представленных на рис. 1 и 2, можно сделать вывод о том, что напряжения в мыщелке и диске височно-нижнечелюстного сустава при физиологическом положении не превышают предельных значений [17–19, 34–36].
Приведем алгоритм коррекции прикуса, назначенного стоматологом в рамках физиологического диапазона (рис. 3).
В предыдущей работе [10] было оценено влияние точки приложения реакции височно-нижнечелюстного сустава на усилия жевательных мышц и реакцию сустава. В качестве точки приложения бралась точка, принадлежащая поверхности мыщелка и находящаяся в физиологическом положении [10].
Также стоит отметить, что в работах [10, 25, 30, 31] усилия жевательных мышц и реакция височно-нижнечелюстного сустава были определены при фиксированном положении нижней челюсти и при заданной максимально возможной для данного пациента (определяется по болевым ощущениям) вертикальной силе сжатия челюстей и точке ее приложения.

Рис. 3. Алгоритм коррекции прикуса, назначенного стоматологом
В работе [9] были найдены три независимых стоматологических параметра, определяющих положение нижней челюсти относительно черепа в сагиттальной плоскости при рассмотрении челюсти как абсолютно твердого тела при плоскопараллельном движении.
В данной статье автор намерен проанализировать влияние параметров, описывающих положение твердого тела при плоскопараллельном движении, выраженных через стоматологические параметры в физиологических диапазонах их нормальных значений, на усилия жевательных мышц и реакцию височнонижнечелюстного сустава с учетом изменения точки приложения реакции.
О пределение усилий жевательных мышц И РЕАКЦИИ ВИСОЧНО - НИЖНЕЧЕЛЮСТНОГО СУСТАВА
В работах [3, 25, 30, 31] проанализирована возможность и адекватность применения задачи минимакса для решения статически неопределенной задачи определения усилий жевательных мышц.
Исходные данные о координатах точек крепления мышц взяты из соответствующей литературы [38].
На рис. 4 приведены зависимости усилий жевательных мышц и реакции височно-нижнечелюстного сустава от параметров, описывающих положение твердого тела при плоскопараллельном движении, выраженных через стоматологические параметры в физиологических диапазонах их нормальных значений, при физиологическом положении точки приложения реакции [1, 15, 28]. Из результатов, представленных на рис. 4, можно сделать вывод о том, что при физиологических диапазонах нормальных значений параметров прикуса мышцы-открыватели не напряжены.
Анализируя данные рис. 4, а , можно сделать вывод, что при увеличении угла ANB , отвечающего за передне-заднее положение нижней челюсти относительно черепа, увеличиваются величины усилий всех мышц, которые напряжены, а также величина реакции височно-нижнечелюстного сустава (в данном случае величины углов DoA и FH–ML соответствовали медианам их значений 43º и 20º соответственно).
Рис. 4, б показывает, что при увеличении угла жевательной эффективности DoA увеличиваются усилия всех мышц, которые напряжены, а также величина реакции височно-нижнечелюстного сустава (в данном случае значения углов ANB и FH–ML соответствовали медианам их значений 2º и 20º соответственно). При этом при достижении правой границы диапазона изменения медиальная крыловидная мышца начинает выключаться из работы, а вслед за этим уменьшается величина проекции реакции на горизонтальную ось и всей реакции.
Рис. 4, в свидетельствует о том, что при увеличении угла наклона нижней челюсти FH–ML уменьшаются величины усилий всех мышц, которые напряжены, а также величина реакции височно-нижнечелюстного сустава (в данном случае величины углов ANB и DoA соответствовали медианам их значений 2º и 43º соответственно).
Из рис. 4, г видно, что при смещении точки приложения в переднем направлении усилия в поверхностной жевательной мышце резко увеличиваются после прохождения физиологического положения точки приложения реакции, появляется горизонтальная составляющая реакции R y , которая влияет на увеличение величины всей реакции височно-нижнечелюстного сустава (в данном случае поверхность мыщелка была аппроксимирована как окружность с радиусом 5 мм и точка приложения реакции варьировалась при величине абсциссы y от –2 до 4 мм) [15].
Н

R
R z
F ms
F tp
F mpa
F Fl md
F lps
F mpp
Угол ANB , град.
3 4
a

R
R z
F ta
F ms
F tp R y F md F lps mpa
F mpp
41 42 44

б
Рис. 4. Влияние параметров в физиологическом диапазоне на усилия мышц и реакцию височно-нижнечелюстного сустава. Обозначения: F ms – поверхностная жевательная; Fmd – глубокая жевательная; Fta – передняя височная; Ftp – задняя височная; F mpa – передняя медиальная крыловидная; F mpp – задняя медиальная крыловидная; F lps – поверхностная латеральная крыловидная; R – реакция височнонижнечелюстного сустава; Ry и Rz – величины проекций реакции височнонижнечелюстного сустава на оси y (горизонтальная) и z (вертикальная)
соответственно: а – угол ANB ; б – угол DoA ; в – угол FH–ML ; г – точка приложения реакции
500 Н

F mpa ( F mpp )
F tp
F lps
-и У гол FH–ML , град.
F л md
19 20 21
в
Н
R
R z
F ta
F ms md
F tp
— F mpa
" F mpp
R y
F lps
1 y
–2 0
2 4
г
Рис. 4. Окончание
Из приведенных результатов видно, что более существенное влияние на изменение усилий жевательных мышц и реакции височно-нижнечелюстного сустава оказывает точка приложения реакции, но это не снижает значимости влияния значений стоматологических параметров в физиологических диапазонах их нормальных значений.
Выводы
В ходе анализа усилий жевательных мышц при изменении параметров прикуса в физиологическом диапазоне, отвечающих за его положение, и физиологическом положении диска височно-нижнечелюстного сустава было выявлено, что ни одна из мышц-открывателей не была нагружена. Таким образом, можно сделать вывод о том, что, устанавливая прикус в рамках физиологических значений параметров, стоматолог обеспечивает ненапряженность мышц-открывателей при сжатии челюстей. Это подтверждает количественно правильность используемой методики назначения положения прикуса стоматологами [33], но только при физиологическом положении диска височно-нижнечелюстного сустава.
В ходе анализа полученных зависимостей усилий мышц и реакции височнонижнечелюстного сустава установлено, что при увеличении угла ANB и угла DoA усилия мышц и реакция практически линейно возрастают, а при увеличении угла FH–ML и смещении точки приложения вперед (при переднем смещении диска) наблюдается уменьшение усилий мышц и реакции, но только до крайнего правого физиологического положения точки приложения (диска височно-нижнечелюстного сустава). Таким образом, можно сделать вывод, что зависимости усилий мышц и реакции височно-нижнечелюстного сустава при изменении угловых параметров имеют приблизительно линейный характер, а положение диска приводит к очень значительным изменениям величины реакции вне физиологического положения, т.е. влияет очень существенно.
Автор считает, что совместный учет влияния точки приложения реакции и стоматологических параметров в физиологических диапазонах их нормальных значений позволит уточнить прикус, выбранный стоматологом в рамках физиологических значений стоматологических параметров, чтобы при окончательной постановке прикуса ни одна из жевательных мышц не была перегружена по сравнению с другими.
Можно сделать вывод, что учет точки приложения реакции височнонижнечелюстного сустава позволит оценить напряжения в диске, а также возможность схлопывания капилляров, вплетающихся в края диска и отвечающих за питание всего диска, а значит и за возникновение перегрузки диска, которая может привести к перфорации и разрыву диска.
Благодарности
Работа выполнена при финансовой поддержке РФФИ (грант № 15-01-04884-а «Биомеханическое моделирование формирования и развития трабекулярной костной ткани в различных отделах скелета человека в норме и при патологии» и грант 16-38-00390 мол_а «Исследование закономерностей деформирования в условиях контактного взаимодействия через антифрикционные покрытия и прослойки с учетом трения по сопрягаемым поверхностям»).
Список литературы Реализация методики коррекции прикуса человека
- Анатомия и биомеханика зубочелюстной системы/под ред. Л.Л. Колесникова, С.Д. Арутюнова, И.Ю. Лебеденко. -М.: Практическая медицина, 2007. -224 с.
- Аун M., Meнар M., Морлье Ж., Рамос A., Монеде-Хокуард Л., Сид M. Разработка и проверка двумерной конечно-элементной модели височно-нижнечелюстного сустава при помощи магнитно-резонансного исследования: моделирование движения открытия и закрытия челюстей//Российский журнал биомеханики. -2011. -Т. 15, № 1. -С. 23-32.
- Зациорский В.М., Прилуцкий Б.И. Нахождение усилий мышц человека по заданному движению//Современные проблемы биомеханики. -1992. -Вып. 7. -С. 81-123.
- Карманов В.Г. Математическое программирование. -М.: Наука, 1975. -272 с.
- Киченко А.А., Шумихин А.Ю., Тверье В.М., Няшин Ю.И., Симановская Е.Ю., Еловикова А.Н. Определение усилий, возникающих в жевательной системе человека//Российский журнал биомеханики. -2004. -Т. 8, № 4. -С. 27-38.
- Никитин В.Н. Методика коррекции прикуса зубочелюстной системы человека на основе биомеханического моделирования//Материалы XI всероссийского съезда по фундаментальным проблемам теоретической и прикладной механики, 20-24 августа 2015. -Казань, 2015. -С. 2775-2777.
- Няшин Ю.И., Тверье В.М., Лохов В.А., Менар М. Височно-нижнечелюстной сустав человека как элемент зубочелюстной системы: биомеханический анализ//Российский журнал биомеханики. -2009. -T. 13, № 4. -C. 7-21.
- Тверье В.М. Биомеханическое моделирование онтогенеза зубочелюстной системы человека//Материалы XI всероссийского съезда по фундаментальным проблемам теоретической и прикладной механики, 20-24 августа 2015. -Казань, 2015. -С. 3684-3686.
- Тверье В.М., Никитин В.Н. Задача коррекции прикуса в зубочелюстной системе человека//Российский журнал биомеханики. -2015. -Т. 19, № 4. -С. 344-358.
- Тверье В.М., Няшин Ю.И., Никитин В.Н. Биомеханическая модель определения усилий мышц и связок в зубочелюстной системе человека//Российский журнал биомеханики. -2013. -Т. 17, № 2. -С. 8-20.
- Тверье В.М., Няшин Ю.И., Никитин В.Н., Оборин Л.Ф. Механическое давление как основа биомеханического моделирования зубочелюстной системы человека//Российский журнал биомеханики. -2014. -Т. 18, № 1. -С. 24-35.
- Тверье В.М., Симановская Е.Ю., Няшин Ю.И. Атрофический синдром, связанный с изменениями биомеханического давления в зубочелюстной системе человека//Российский журнал биомеханики. -2006. -Т. 10, № 1. -С. 9-14.
- Тверье В.М., Симановская Е.Ю., Няшин Ю.И. Биомеханическое давление, сопутствующее формированию зубоальвеолярного блока у человека//Российский журнал биомеханики. -2005. -Т. 9, № 3. -С. 9-15.
- Тверье В.М., Симановская Е.Ю., Еловикова А.Н., Няшин Ю.И., Киченко А.А. Биомеханический анализ развития и функционирования зубочелюстной системы человека//Российский журнал биомеханики. -2007. -Т. 11, № 4. -С. 84-104.
- Хватова В.А. Клиническая гнатология. -М.: Медицина, 2005. -296 с.
- Barbenel J.C. The biomechanics of temporomandibular joint: a theoretical study//Journal of Biomechanics. -1972. -Vol. 5, № 3. -P. 251-256.
- Chen J., Akyuz U., Xu L., Pidaparti R.M.V. Stress analysis of the human temporomandibular joint//Med. Eng. Phys. -1998. -Vol. 20. -P. 565-572.
- Chen J., Xu L. A finite element analysis of the human temporomandibular joint//J. Biomech. Eng. -1994. -Vol. 116. -P. 401-407.
- Gröning F., Fagan M., O'Higgins P. Modeling the human mandible under masticatory loads: which input variables are important?//Anat. Rec. (Hoboken). -2012. -Vol. 295, № 5. -P. 853-863 DOI: 10.1002/ar.22455
- Hyoun-Suk Ahn, Su-Beom Cho, Kwang-Joon Koh. Positional and morphologic changes of the temporomandibular joint disc using magnetic resonance imaging//Korean Journal of Oral and Maxillofacial Radiology. -2001. -Vol. 31. -P. 235-240.
- Ingawalé S.M., Goswami T. Biomechanics of the temporomandibular joint//Human Musculoskeletal Biomechanics/ed. by T. Goswami. -Rijeka, 2012. -244 p.
- Iwasaki L.R., Crosby M.J., Gonzalez Y., McCall W.D., Marx D.B., Ohrbach R., Nickel J.C. Temporomandibular joint loads in subjects with and without disc displacement//Orthopedic Reviews. -2009. -Vol. 1. -P. 90-93.
- Kinniburgh R.D., Major P.W., Nebbe B., West K., Glover K.E. Osseous morphology and spatial relationships of the temporomandibular joint: comparisons of normal and anterior disc positions//Angle Orthodontist. -2000. -Vol. 70, № 1. -P. 70-80.
- Koolstra J.H., van Eijden T.M. Combined finite-element and rigid-body analysis of human jaw joint dynamics//Journal of Biomechanics. -2005. -Vol. 38. -P. 2431-2439.
- Koolstra J.H., van Eijden T.M.G.J. A method to predict muscle control in the kinematically and mechanically indeterminate human masticatory system//J. Biomech. -2001. -Vol. 34. -P. 1179-1188.
- Laboissière R., Ostry D.J., Feldman A.G. The control of multimuscle systems: human jaw and hyoid movements//Biol. Cybern. -1996. -Vol. 74. -P. 373-384.
- Manfredini D., Basso D., Arboretti R., Guarda-Nardini L. Association between magnetic resonance signs of temporomandibular joint effusion and disk displacement//Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. -2009. -Vol. 107. -P. 266-271.
- Nordin M., Franke V.H. Basic biomechanics of the musculoskeletal system. -3rd ed. -Philadelphia: Lippincott Williams & Wilkins, 2001. -496 p.
- Osborn J.W. Features of human jaw design which maximize the bite force//Journal of Biomechanics. -1996. -Vol. 29, № 5. -P. 589-595.
- Osborn J.W., Baragar F.A. Predicted pattern of human muscle activity during clenching derived from a computer assisted model: symmetric vertical bite forces//Journal of Biomechanics. -1985. -Vol. 18, № 8. -P. 599-612.
- Pedotti A., Krishman V.V., Stark L. Optimization of muscle-force sequencing in human locomotion//Mathematical Biosciences. -1978. -Vol. 38, № 1/2. -P. 57-76.
- Pérez del Palomar A., Doblaré M. An accurate simulation model of anteriorly displaced TMJ discs with and without reduction//Med. Eng. Phys. -2007. -Vol. 29, № 2. -P. 216-226.
- Slavicek R. The masticatory organ: funktions and dysfunktions. -Klosterneuburg: GAMMA Medizinisch-wissenschaftliche Fortbildungs-GmbH, 2002. -543 p.
- Tanaka E., del Pozo R., Tanaka M., Asai D., Hirose M., Iwabe T., Tanne K. Three-dimensional finite element analysis of human temporomandibular joint with andwithout disc displacement during jaw opening//Med. Eng. Phys. -2004. -Vol. 26. -P. 503-511.
- Tanaka E., Rodrigo D.P., Miyawaki Y., Lee K., Yamaguchi K., Tanne K. Stress distribution in the temporomandibular joint affected by anterior disc displacement: a three-dimensional analytic approach with the finite-element method//J. Oral Rehab. -2000. -Vol. 27. -P. 754-759.
- Tanaka E., Rodrigo D.P., Tanaka M., Kawaguchi A., Shibazaki T., Tanne K. Stress analysis in the TMJ during jaw opening by use of a three-dimensional finite element model based on magnetic resonance images//Int. J. Oral Maxillofac. Surg. -2001. -Vol. 30. -P. 421-430.
- Throckmorton G.S. Quantitative calculations of temporomandibular joint reaction forces. Part II. The importance of the direction of the jaw muscle forces//J. Biomech. -1985. -Vol. 18, № 6. -P. 453-461.
- van Eijden T.M.G.J., Korfage J.A.M., Brugman P. Architecture of the human jaw-closing and jaw-opening muscles//The Anatomical Record. -1997. -Vol. 248. -P. 464-474.
- van Essen N.L., Anderson I.A., Hunter P.J., Carman J.B., Clarke R.D., Pullan A.J. Anatomically based modelling of the human skull and jaw//Cells Tissues Organs. -2005. -Vol. 180. -P. 44-53 DOI: 10.1159/000086198