High-precision computations using residue-interval arithmetic on FPGAS

Автор: Korzhavina Anastasia Sergeevna, Knyazkov Vladimir Sergeevich

Журнал: Программные системы: теория и приложения @programmnye-sistemy

Рубрика: Математические основы программирования

Статья в выпуске: 3 (42) т.10, 2019 года.

Бесплатный доступ

The problem of round-off errors arises in a large number of issues in various fields of knowledge, including computational mathematics, mathematical physics, biochemistry, quantum mechanics, mathematical programming. Today, experts place particular emphasis on accuracy, fault tolerance, stability, and reproducibility of computation results of numerical models when solving a wide range of industrial and scientific problems, such as: mathematical modeling and structural designs of aircrafts, cars, ships; process modeling and computations for solving large-scale problems in the field of nuclear physics, aerodynamics, gas, and hydrodynamics; problems on reliable predictive modeling of climatic processes and forecasting of global changes in the atmosphere and water environments; faithful modeling of chemical processes and synthesis of pharmaceuticals, etc.Floating-point arithmetic is the dominant choice for most scientific applications. However, there are a lot of unsolvable with double-precision arithmetic problems...

Еще

Residue arithmetic, hybrid number systems, the interval logarithmic number evaluation, high-precision computations, long numbers

Короткий адрес: https://sciup.org/143169803

IDR: 143169803   |   DOI: 10.25209/2079-3316-2019-10-3-81-127

Статья научная