Recovering of lower order coefficients in forward-backward parabolic equations

Бесплатный доступ

We study the issue of recovering a lower order coefficient depending on spatial variables in a forward-backward parabolic equation of the second order. The overdetermination condition is an analog of the final overdetermination condition. A solution at the initial and final moments of time is given. Equations of this type often appear in mathematical physics, for example, in fluid dynamics, in transport theory, geometry, population dynamics, and some other fields. Conditions on the data are reduced to smoothness assumptions and some inequalities for the norms of the data. So it is possible to say that the obtained results are local in a certain way. Under some condition on the data, we prove that the problem is solvable. Uniqueness of the theorem is also described. The arguments rely on the generalized maximum principle and the solvability of theorems of the periodic direct problem. The results generalize the previous knowledge about the multidimensional case. The used function spaces are the Sobolev spaces.

Еще

Inverse problem, final overdetermination, forward-backward parabolic equation, solvability, periodic condition

Короткий адрес: https://sciup.org/147232791

IDR: 147232791   |   DOI: 10.14529/mmph180403

Список литературы Recovering of lower order coefficients in forward-backward parabolic equations

  • Triebel, H. Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, Vol. 18 / H. Triebel. - North-Holland Publishing, Amsterdam, 1978. DOI: 10.1016/s0924-6509(09)x7004-2
  • Ivanchov, M. Inverse problems for equations of parabolic type / M. Ivanchov // Mathematical Studies Monograph Series 10. - Lviv: WNTL Publishers, 2003. - 238 p.
  • Kozhanov, A.I. Composite Type Equations and Inverse Problems / A.I. Kozhanov. - Berlin, Boston: De Gruyter, 1999.
  • Isakov, V. Inverse Problems for Partial Differential Equations / V. Isakov / Appl. Math. Sci. - Berlin: Springer, Cham, 2006. - Vol. 127. - 344 p.
  • Prilepko, A.I. Methods for solving inverse problems in Mathematical Physics / A.I. Prilepko, D.G. Orlovsky, I.A. Vasin. - New-York: Marcel Dekker, Inc., 1999.
  • Greenberg, W. Generalized kinetic equations / W. Greenberg, C.V.M. Van der Mee, P.F. Zweifel // Integral Equations and Operator Theory. - 1984. - Vol. 7. - Issue 1. - P. 60-95.
  • Pyatkov, S.G. On solvability of boundary value problems for kinetic operator-differential equations / S.G. Pyatkov, S.V. Popov, V.I. Antipin // Integral Equations and Operator Theory. - 2014. - Vol. 80, Issue 4. - P. 557-580.
  • Абашеева, Н.Л. Разрешимость периодической краевой задачи для операторно-дифференциального уравнения смешанного типа / Н.Л. Абашеева // Вестник НГУ. Серия: Математика, механика, информатика. - 2001. - Т. 1, № 2. - С. 3-18.
  • Abasheeva, N.L. Determination of a right-hand side term in an operator-differential equation of mixed type / N.L. Abasheeva // Journal of Inverse and Ill-posed Problems. - 2002. - Vol. 10. - Issue 6. - P. 547-560.
  • Пятков, С.Г. Разрешимость линейной обратной задачи для одного класса сингулярных параболических уравнений / С.Г. Пятков // Обратные задачи и информационные технологии. - 2002. - Т. 1, № 2. - С. 115-123.
  • Pyatkov, S.G. Operator Theory. Nonclassical problems / S.G. Pyatkov. - Utrecht-Boston-Köln-Tokyo: VSP, 2002. - 348 p.
  • Калиев, И.А. Обратная задача для параболического уравнения с переменным направлением времени с обобщенными условиями сопряжения / И.А. Калиев, М.Ф. Мугафаров, О.В. Фаттахова // Уфимский математический журнал. - 2011. - Т. 3, Вып. 2. - С. 34-42.
  • Abasheeva, N.L. Some inverse problems for parabolic equations with changing time direction / N.L. Abasheeva // Journal of Inverse and Ill-posed Problems. - 2004. - Vol. 12, no. 4. - P. 337-348.
  • Ladyzhenskaya, O.A. Linear and Quasilinear Elliptic Equations. Vol. 46 / O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'tseva. - New-York: Academic Press, 1968. - 495 p.
Еще
Статья научная