Research progress of p-type cuprous oxide in the field of light energy utilization

Автор: Ren Bingbing, Mindrov Konstntin

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Физико-математические науки

Статья в выпуске: 3 т.9, 2023 года.

Бесплатный доступ

Cuprous oxide (Cu2O), as a representative intrinsic p-type inorganic semiconductor material, has been widely used in the field of optical energy utilization, such as photovoltaic, photocatalysis, photodegradation and other fields, and has an extremely important position. For a long time, the literature on Cu2O’s application technology in the field of light energy utilization is relatively scattered and independent, resulting in a certain degree of obstacles and difficulties to obtain relevant technical knowledge and have a deep understanding of its internal principles. According to the application of Cu2O in the field of light energy utilization in recent years, it is mainly divided into three modules (photovoltaic, photocatalysis, photodegradation), and mainly summarizes the classification, principle and characteristics of Cu2O application in the field of light energy and prospects the optimization method and development direction of the application in the field of Cu2O light energy. This review aims to provide reference and guidance for the optical energy applications of Cu2O and other related inorganic oxide semiconductors.

Еще

Cuprous oxide, inorganic oxide, light energy utilization, research progress

Короткий адрес: https://sciup.org/14127160

IDR: 14127160   |   DOI: 10.33619/2414-2948/88/01

Список литературы Research progress of p-type cuprous oxide in the field of light energy utilization

  • Yu, W., Li, F., Wang, H., Alarousu, E., Chen, Y., Lin, B., ... & Wu, T. (2016). Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells. Nanoscale, 8(11), 6173–6179. https://doi.org/10.1039/C5NR07758C
  • Gusain, R., Kumar, P., Sharma, O. P., Jain, S. L., & Khatri, O. P. (2016). Reduced graphene oxide–CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. Applied Catalysis B: Environmental, 181, 352–362. https://doi.org/10.1016/j.apcatb.2015.08.012
  • Omrani, N., & Nezamzadeh-Ejhieh, A. (2020). Focus on scavengers’ effects and GC-MASS analysis of photodegradation intermediates of sulfasalazine by Cu2O/CdS nanocomposite. Separation and Purification Technology, 235, 116228. https://doi.org/10.1016/j.seppur.2019.116228
  • Izaki, M., Shinagawa, T., Mizuno, K. T., Ida, Y., Inaba, M., & Tasaka, A. (2007). Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device. Journal of Physics D: Applied Physics, 40(11), 3326.
  • Ali, S., Lee, J., Kim, H., Hwang, Y., Razzaq, A., Jung, J. W., ... & In, S. I. (2020). Sustained, photocatalytic CO2 reduction to CH4 in a continuous flow reactor by earth-abundant materials: Reduced titania-Cu2O Z-scheme heterostructures. Applied Catalysis B: Environmental, 279, 119344. https://doi.org/10.1016/j.apcatb.2020.119344
  • Chen, J., Liu, X., Zhang, H., Liu, P., Li, G., An, T., & Zhao, H. (2016). Soft-template assisted synthesis of mesoporous CuO/Cu2O composite hollow microspheres as efficient visible-light photocatalyst. Materials Letters, 182, 47-51. https://doi.org/10.1016/j.matlet.2016.06.077
  • Chen, S., Lin, L., Liu, J., Lv, P., Wu, X., Zheng, W., ... & Lai, F. (2015). An electrochemical constructed p-Cu2O/n-ZnO heterojunction for solar cell. Journal of Alloys and Compounds, 644, 378-382. https://doi.org/10.1016/j.jallcom.2015.02.230
  • Zuo, C., & Ding, L. (2015). Solution‐processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells. Small, 11(41), 5528–5532. https://doi.org/10.1002/smll.201501330
  • Zhang, L., Sun, H., Xie, L., Lu, J., Zhang, L., Wu, S., ... & Liu, J. M. (2015). Inorganic solar cells based on electrospun ZnO nanofibrous networks and electrodeposited Cu2O. Nanoscale research letters, 10(1), 1–13. https://doi.org/10.1186/s11671-015-1169-8
  • Koo, H. S., Wang, D. T., Yu, Y. K., Ho, S. H., Jhang, J. Y., Chen, M., & Tai, M. F. (2012). Effect of Cu2O Doping in TiO2 Films on Device Performance of Dye-Sensitized Solar Cells. Japanese Journal of Applied Physics, 51(10S), 10NE18.
  • Miao, X., Wang, S., Sun, W., Zhu, Y., Du, C., Ma, R., & Wang, C. (2019). Effect of Cu2O Content in Electrodeposited CuOx Film on Perovskite Solar Cells. Nano, 14(10), 1950126. https://doi.org/10.1142/S1793292019501261
  • Polat, Ö., Aytug, T., Lupini, A. R., Paranthaman, P. M., Ertugrul, M., Bogorin, D. F., ... & Christen, D. K. (2013). Nanostructured columnar heterostructures of TiO2 and Cu2O enabled by a thin-film self-assembly approach: Potential for photovoltaics. Materials Research Bulletin, 48(2), 352–356. https://doi.org/10.1016/j.materresbull.2012.10.044
  • Shang, Y., & Guo, L. (2015). Facet‐Controlled Synthetic Strategy of Cu2O‐Based Crystals for Catalysis and Sensing. Advanced Science, 2(10), 1500140. https://doi.org/10.1002/advs.201500140
  • Zeng, Z., Yan, Y., Chen, J., Zan, P., Tian, Q., & Chen, P. (2019). Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots. Advanced Functional Materials, 29(2), 1806500. https://doi.org/10.1002/adfm.201806500
  • Robatjazi, H., Zhao, H., Swearer, D. F., Hogan, N. J., Zhou, L., Alabastri, A., ... & Halas, N. J. (2017). Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles. Nature communications, 8(1), 1-10. https://doi.org/10.1038/s41467-017-00055-z
  • Wu, Y. A., McNulty, I., Liu, C., Lau, K. C., Liu, Q., Paulikas, A. P., ... & Rajh, T. (2019). Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nature Energy, 4(11), 957–968. https://doi.org/10.1038/s41560-019-0490-3
  • Blackburn, B., Hassan, I., Zhang, C., Blackman, C., Holt, K., & Carmalt, C. (2016). Aerosol assisted chemical vapour deposition synthesis of copper (I) oxide thin films for CO2 reduction photocatalysis. Journal of Nanoscience and Nanotechnology, 16(9), 10112–10116. https://doi.org/10.1166/jnn.2016.12843
  • Miller, E. B., Zahran, E. M., Knecht, M. R., & Bachas, L. G. (2017). Metal oxide semiconductor nanomaterial for reductive debromination: Visible light degradation of polybrominated diphenyl ethers by Cu2O@ Pd nanostructures. Applied Catalysis B: Environmental, 213, 147–154. https://doi.org/10.1016/j.apcatb.2017.05.020
  • Kumar, A., Kumar, A., Sharma, G., Ala'a, H., Naushad, M., Ghfar, A. A., & Stadler, F. J. (2018). Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment. Chemical Engineering Journal, 334, 462–478. https://doi.org/10.1016/j.cej.2017.10.049
  • Cui, W., An, W., Liu, L., Hu, J., & Liang, Y. (2014). Novel Cu2O quantum dots coupled flower-like BiOBr for enhanced photocatalytic degradation of organic contaminant. Journal of hazardous materials, 280, 417–427. https://doi.org/10.1016/j.jhazmat.2014.08.032
  • Yu, X., Zhang, J., Zhang, J., Niu, J., Zhao, J., Wei, Y., & Yao, B. (2019). Photocatalytic degradation of ciprofloxacin using Zn-doped Cu2O particles: analysis of degradation pathways and intermediates. Chemical Engineering Journal, 374, 316–327. https://doi.org/10.1016/j.cej.2019.05.177
  • Cui, Y., Wang, C., Liu, G., Yang, H., Wu, S., & Wang, T. (2011). Fabrication and photocatalytic property of ZnO nanorod arrays on Cu2O thin film. Materials Letters, 65(14), 2284–2286. https://doi.org/10.1016/j.matlet.2011.04.041
  • Chen, R., Lu, J., Wang, Z., Zhou, Q., & Zheng, M. (2018). Microwave synthesis of Cu/Cu2O/SnO2 composite with improved photocatalytic ability using SnCl4 as a protector. Journal of Materials Science, 53(13), 9557–9566. https://doi.org/10.1007/s10853-018-2261-0
  • Grondahl, L. O. (1933). The copper-cuprous-oxide rectifier and photoelectric cell. Reviews of Modern Physics, 5(2), 141. https://doi.org/10.1103/RevModPhys.5.141
  • Omelchenko, S. T., Tolstova, Y., Atwater, H. A., & Lewis, N. S. (2017). Excitonic effects in emerging photovoltaic materials: A case study in Cu2O. ACS Energy Letters, 2(2), 431–437.
  • Hu, P., Du, W., Wang, M., Wei, H., Ouyang, J., Qian, Z., & Tian, Y. (2020). Reduced bandgap and enhanced p-type electrical conduction in Ag-alloyed Cu2O thin films. Journal of Applied Physics, 128(12), 125302. https://doi.org/10.1063/5.0019408
  • Izaki, M., Fukazawa, K., Sato, K., Khoo, P. L., Kobayashi, M., Takeuchi, A., & Uesugi, K. (2019). Defect structure and photovoltaic characteristics of internally stacked CuO/Cu2O photoactive layer prepared by electrodeposition and heating. ACS Applied Energy Materials, 2(7), 4833–4840. https://doi.org/10.1021/acsaem.9b00514
  • Zang, Z. (2018). Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films. Applied Physics Letters, 112(4), 042106. https://doi.org/10.1063/1.5017002
  • Hossain, M. I., Alharbi, F. H., & Tabet, N. (2015). Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells. Solar Energy, 120, 370-380. https://doi.org/10.1016/j.solener.2015.07.040
  • Nejand, B. A., Ahmadi, V., Gharibzadeh, S., & Shahverdi, H. R. (2016). Cuprous oxide as a potential low‐cost hole‐transport material for stable perovskite solar cells. ChemSusChem, 9(3), 302–313. https://doi.org/10.1002/cssc.201501273
  • Guo, Y., Lei, H., Xiong, L., Li, B., Chen, Z., Wen, J., ... & Fang, G. (2017). Single phase, high hole mobility Cu 2 O films as an efficient and robust hole transporting layer for organic solar cells. Journal of Materials Chemistry A, 5(22), 11055–11062. https://doi.org/10.1039/C7TA01628J
  • Elseman, A. M., Selim, M. S., Luo, L., Xu, C. Y., Wang, G., Jiang, Y., ... & Song, Q. L. (2019). Efficient and Stable Planar np Perovskite Solar Cells with Negligible Hysteresis through Solution Processed Cu2O Nanocubes as a Low‐Cost Hole‐Transport Material. ChemSusChem, 12(16), 3808–3816. https://doi.org/10.1002/cssc.201901430
  • Jeong, S. S., Mittiga, A., Salza, E., Masci, A., & Passerini, S. (2008). Electrodeposited ZnO/Cu2O heterojunction solar cells. Electrochimica Acta, 53(5), 2226–2231. https://doi.org/10.1016/j.electacta.2007.09.030
  • Soundaram, N., Chandramohan, R., Valanarasu, S., Thomas, R., & Kathalingam, A. (2015). Studies on SILAR deposited Cu2O and ZnO films for s https://doi.org/10.1007/s10854-015-3020-5olar cell applications. Journal of Materials Science: Materials in Electronics, 26(7), 5030–5036. https://doi.org/10.1007/s10854-015-3020-5
  • Gershon, T., Musselman, K. P., Marin, A., Friend, R. H., & MacManus-Driscoll, J. L. (2012). Thin-film ZnO/Cu2O solar cells incorporating an organic buffer layer. Solar Energy Materials and Solar Cells, 96, 148–154. https://doi.org/10.1016/j.solmat.2011.09.043
  • Yu, L., Xiong, L., & Yu, Y. (2015). Cu2O homojunction solar cells: F-doped N-type thin film and highly improved efficiency. The Journal of Physical Chemistry C, 119(40), 22803–22811. https://doi.org/10.1021/acs.jpcc.5b06736
  • Naz, G., Shamsuddin, M., Butt, F. K., Bajwa, S. Z., Khan, W. S., Irfan, M., & Irfan, M. (2019). Au/Cu2O core/shell nanostructures with efficient photoresponses. Chinese Journal of Physics, 59, 307–316. https://doi.org/10.1016/j.cjph.2019.03.008
  • Chang, X., Wang, T., Zhang, P., Wei, Y., Zhao, J., & Gong, J. (2016). Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products. Angewandte Chemie International Edition, 55(31), 8840–8845. https://doi.org/10.1002/anie.201602973
  • Yuan, Q., Chen, L., Xiong, M., He, J., Luo, S. L., Au, C. T., & Yin, S. F. (2014). Cu2O/BiVO4 heterostructures: synthesis and application in simultaneous photocatalytic oxidation of organic dyes and reduction of Cr (VI) under visible light. Chemical Engineering Journal, 255, 394–402. https://doi.org/10.1016/j.cej.2014.06.031
  • Omrani, N., & Nezamzadeh-Ejhieh, A. (2020). A comprehensive study on the enhanced photocatalytic activity of Cu2O/BiVO4/WO3 nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 389, 112223. https://doi.org/10.1016/j.jphotochem.2019.112223
  • Liu, A., Zhu, Y., Li, K., Chu, D., Huang, J., Li, X., ... & Du, Y. (2018). A high performance p-type nickel oxide/cuprous oxide nanocomposite with heterojunction as the photocathodic catalyst for water splitting to produce hydrogen. Chemical Physics Letters, 703, 56–62. https://doi.org/10.1016/j.cplett.2018.05.020
  • Li, H., Lei, Y., Huang, Y., Fang, Y., Xu, Y., Zhu, L., & Li, X. (2011). Photocatalytic reduction of carbon dioxide to methanol by Cu2O/SiC nanocrystallite under visible light irradiation. Journal of Natural Gas Chemistry, 20(2), 145–150. https://doi.org/10.1016/S1003-9953(10)60166-1
  • Li, Y., Wang, W. N., Zhan, Z., Woo, M. H., Wu, C. Y., & Biswas, P. (2010). Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Applied Catalysis B: Environmental, 100(1-2), 386-392. https://doi.org/10.1016/j.apcatb.2010.08.015
  • Guo, L., Cao, J., Zhang, J., Hao, Y., & Bi, K. (2019). Photoelectrochemical CO2 reduction by Cu2O/Cu2S hybrid catalyst immobilized in TiO2 nanocavity arrays. Journal of Materials Science, 54(14), 10379-10388. https://doi.org/10.1007/s10853-019-03615-4
  • Zhou, C., Wang, S., Zhao, Z., Shi, Z., Yan, S., & Zou, Z. (2018). A Facet‐Dependent Schottky‐Junction Electron Shuttle in a BiVO4 {010}–Au–Cu2O Z‐Scheme Photocatalyst for Efficient Charge Separation. Advanced Functional Materials, 28(31), 1801214. https://doi.org/10.1002/adfm.201801214
  • Zhang, W., Shi, L., Tang, K., & Dou, S. (2010). Controllable synthesis of Cu2O microcrystals via a complexant‐assisted synthetic route. https://doi.org/10.1002/ejic.200900866
  • Chang, P. Y., & Tseng, I. H. (2018). Photocatalytic conversion of gas phase carbon dioxide by graphitic carbon nitride decorated with cuprous oxide with various morphologies. Journal of CO2 Utilization, 26, 511–521. https://doi.org/10.1016/j.jcou.2018.06.009
  • Ojha, N., Bajpai, A., & Kumar, S. (2021). Enriched oxygen vacancies of Cu2O/SnS2/SnO2 heterostructure for enhanced photocatalytic reduction of CO2 by water and nitrogen fixation. Journal of Colloid and Interface Science, 585, 764–777. https://doi.org/10.1016/j.jcis.2020.10.056
  • Li, P., Jing, H., Xu, J., Wu, C., Peng, H., Lu, J., & Lu, F. (2014). High-efficiency synergistic conversion of CO 2 to methanol using Fe 2 O 3 nanotubes modified with double-layer Cu 2 O spheres. Nanoscale, 6(19), 11380–11386. https://doi.org/10.1039/C4NR02902J
  • Lu, Y., Zhang, X., Chu, Y., Yu, H., Huo, M., Qu, J., ... & Yuan, X. (2018). Cu2O nanocrystals/TiO2 microspheres film on a rotating disk containing long-afterglow phosphor for enhanced round-the-clock photocatalysis. Applied Catalysis B: Environmental, 224, 239–248. https://doi.org/10.1016/j.apcatb.2017.10.054
  • Li, B., Niu, W., Cheng, Y., Gu, J., Ning, P., & Guan, Q. (2018). Preparation of Cu2O modified TiO2 nanopowder and its application to the visible light photoelectrocatalytic reduction of CO2 to CH3OH. Chemical Physics Letters, 700, 57–63. https://doi.org/10.1016/j.cplett.2018.03.049
  • Kulandaivalu, T., Rashid, S. A., Sabli, N., & Tan, T. L. (2019). Visible light assisted photocatalytic reduction of CO2 to ethane using CQDs/Cu2O nanocomposite photocatalyst. Diamond and Related Materials, 91, 64–73. https://doi.org/10.1016/j.diamond.2018.11.002
  • Masegi, H., Goto, H., Sadale, S. B., & Noda, K. (2020). Real-time monitoring of photocatalytic methanol decomposition over Cu2O-loaded TiO2 nanotube arrays in high vacuum. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 38(5), 052401. https://doi.org/10.1116/6.0000194
  • Fujita, S. I., Kawamori, H., Honda, D., Yoshida, H., & Arai, M. (2016). Photocatalytic hydrogen production from aqueous glycerol solution using NiO/TiO2 catalysts: Effects of preparation and reaction conditions. Applied Catalysis B: Environmental, 181, 818–824. https://doi.org/10.1016/j.apcatb.2015.08.048
  • Tawfik, W. Z., Hassan, M. A., Johar, M. A., Ryu, S. W., & Lee, J. K. (2019). Highly conversion efficiency of solar water splitting over p-Cu2O/ZnO photocatalyst grown on a metallic substrate. Journal of Catalysis, 374, 276–283. https://doi.org/10.1016/j.jcat.2019.04.045
  • Carrier, M., Perol, N., Herrmann, J. M., Bordes, C., Horikoshi, S., Paisse, J. O., ... & Guillard, C. (2006). Kinetics and reactional pathway of Imazapyr photocatalytic degradation Influence of pH and metallic ions. Applied Catalysis B: Environmental, 65(1–2), 11–20. https://doi.org/10.1016/j.apcatb.2005.11.014
  • Wang, M., Sun, L., Lin, Z., Cai, J., Xie, K., & Lin, C. (2013). p–n Heterojunction photoelectrodes composed of Cu 2 O-loaded TiO 2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities. Energy & Environmental Science, 6(4), 1211–1220. https://doi.org/10.1039/C3EE24162A
  • Wang, Y., Shang, X., Shen, J., Zhang, Z., Wang, D., Lin, J., ... & Li, C. (2020). Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation. Nature communications, 11(1), 1–11. https://doi.org/10.1038/s41467-020-16742-3
  • Deng, X., Zhang, Q., Zhou, E., Ji, C., Huang, J., Shao, M., ... & Xu, X. (2015). Morphology transformation of Cu2O sub-microstructures by Sn doping for enhanced photocatalytic properties. Journal of Alloys and Compounds, 649, 1124–1129. https://doi.org/10.1016/j.jallcom.2015.07.124
  • Ping, T., Mihua, S., Chengwen, S., Shuaihua, W., & Murong, C. (2016). Enhanced photocatalytic activity of Cu2O/Cu heterogeneous nanoparticles synthesized in aqueous colloidal solutions on degradation of methyl orange. Rare Metal Materials and Engineering, 45(9), 2214–2218. https://doi.org/10.1016/S1875-5372(17)30005-X
  • Shi, Y., Yang, Z., Wang, B., An, H., Chen, Z., & Cui, H. (2016). Adsorption and photocatalytic degradation of tetracycline hydrochloride using a palygorskite-supported Cu2O–TiO2 composite. Applied Clay Science, 119, 311–320. https://doi.org/10.1016/j.clay.2015.10.033
  • Tang, Q., Wu, W., Zhang, B., Luo, J., Zhang, H., Guo, X., ... & Cao, J. (2019). A novel in situ synthesis of Cu/Cu2O/CuO/sulfonated polystyrene heterojunction photocatalyst with enhanced photodegradation activity. Journal of Inorganic and Organometallic Polymers and Materials, 29(2), 340–345. https://doi.org/10.1007/s10904-018-1004-7
  • An, J., & Zhou, Q. (2012). Degradation of some typical pharmaceuticals and personal care products with copper-plating iron doped Cu2O under visible light irradiation. Journal of Environmental Sciences, 24(5), 827–833. https://doi.org/10.1016/S1001-0742(11)60847-4
  • Zhu, Q., Zhang, Y., Lv, F., Chu, P. K., Ye, Z., & Zhou, F. (2012). Cuprous oxide created on sepiolite: preparation, characterization, and photocatalytic activity in treatment of red water from 2, 4, 6-trinitrotoluene manufacturing. Journal of Hazardous Materials, 217, 11–18. https://doi.org/10.1016/j.jhazmat.2011.12.053
  • Zhang, A. Y., He, Y. Y., Lin, T., Huang, N. H., Xu, Q., & Feng, J. W. (2017). A simple strategy to refine Cu2O photocatalytic capacity for refractory pollutants removal: Roles of oxygen reduction and Fe (II) chemistry. Journal of hazardous materials, 330, 9–17. https://doi.org/10.1016/j.jhazmat.2017.01.051
  • Huang, Z., Dai, X., Huang, Z., Wang, T., Cui, L., Ye, J., & Wu, P. (2019). Simultaneous and efficient photocatalytic reduction of Cr (VI) and oxidation of trace sulfamethoxazole under LED light by rGO@ Cu2O/BiVO4 pn heterojunction composite. Chemosphere, 221, 824–833. https://doi.org/10.1016/j.chemosphere.2019.01.087
  • Falah, M., & MacKenzie, K. J. (2015). Synthesis and properties of novel photoactive composites of P25 titanium dioxide and copper (I) oxide with inorganic polymers. Ceramics International, 41(10), 13702–13708. https://doi.org/10.1016/j.ceramint.2015.07.198
  • Zhang, Z., Zhai, S., Wang, M., Ji, H., He, L., Ye, C., ... & Zhang, H. (2016). Photocatalytic degradation of rhodamine B by using a nanocomposite of cuprous oxide, three-dimensional reduced graphene oxide, and nanochitosan prepared via one-pot synthesis. Journal of Alloys and Compounds, 659, 101–111. https://doi.org/10.1016/j.jallcom.2015.11.027
  • Anku, W. W., Shukla, S. K., & Govender, P. P. (2018). Graft Gum Ghatti Caped Cu2O nanocomposite for photocatalytic degradation of naphthol blue black dye. Journal of Inorganic and Organometallic Polymers and Materials, 28(4), 1540–1551. https://doi.org/10.1007/s10904-018-0875-y
  • Razmara, Z., & Poorsargol, M. (2019). Ultrasonic‐assisted synthesis of supramolecular copper (II) complex a precursor for the preparation of octahedron Cu2O nanoparticles applicable in the adsorption and photodegradation of Rhodamine B. Applied Organometallic Chemistry, 33(9), e5084. https://doi.org/10.1002/aoc.5084
  • Xu, Q., Huang, Z., Ji, S., Zhou, J., Shi, R., & Shi, W. (2020). Cu2O nanoparticles grafting onto PLA fibers via electron beam irradiation: bifunctional composite fibers with enhanced photocatalytic of organic pollutants in aqueous and soil systems. Journal of Radioanalytical and Nuclear Chemistry, 323(1), 253–261. https://doi.org/10.1007/s10967-019-06842-w
Еще
Статья обзорная