Решения дифференциального неравенства с нуль-лагранжианом: повышающаяся интегрируемость и устранимость особенностей. I
Автор: Егоров Александр Анатольевич
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 3 т.16, 2014 года.
Бесплатный доступ
Целью настоящей статьи является установление свойства самоулучшающейся интегрируемости производных решений дифференциального неравенства с нуль-лагранжианом. Более точно, мы доказываем, что решение класса Соболева с показателем суммирумости, немного меньшим естественно определенного структурными предположениями на нуль-лагранжиан показателя, фактически принадлежит пространству Соболева с показателем суммируемости, немного большим естественного показателя. Мы также применяем это свойство, чтобы улучшить теоремы о гельдеровой регулярности и об устойчивости из статьи [19].
Короткий адрес: https://sciup.org/14318466
IDR: 14318466
Список литературы Решения дифференциального неравенства с нуль-лагранжианом: повышающаяся интегрируемость и устранимость особенностей. I
- Astala K. Area distortion of quasiconformal mappings//Acta Math.-1994.-Vol. 173, № 1.-P. 37-60.
- Astala K., Iwaniec T., Martin G. Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane.-Princeton: Princeton Univ. Press, 2009.-xvi+677 p.-(Princeton Mathematical Series. Vol. 48.).
- Ball J. M. Convexity conditions and existence theorems in nonlinear elasticity//Arch. Ration. Mech. Anal.-1977.-Vol. 63.-P. 337-403.
- Ball J. M. Constitutive inequalities and existence theorems in nonlinear elastostatics//Nonlinear Analysis and Mechanics: Heriot-Watt Symposium (Edinburgh, 1976).-London: Pitman, 1977.-Vol. 1.-P. 187-241.
- Ball J. M., Currie J. C., Olver P. J. Null Lagrangians, weak continuity, and variational problems of arbitrary order//J. Funct. Anal.-1981.-Vol. 41.-P. 135-174.
- Belinskii P. P. General Properties of Quasiconformal Mappings.-Novosibirsk: Nauka, 1974.-[Russian].
- Bezrukova O. L., Dairbekov N. S., Kopylov A. P. On mappings which are close in the $C$-norm to classes of solutions of linear elliptic partial differential equations//Tr. Inst. Math.-1987.-Vol. 7.-P. 19-30.-[Russian].
- Bojarski B. Homeomorphic solutions of Beltrami systems//Dokl. Akad. Nauk SSSR.-1955.-Vol. 102.-P. 661-664.-[Russian].
- Bojarski B. Generalized solutions of a system of first-order differential equations of elliptic type with discontinuous coefficients//Math. Sb.-1957.-Vol. 43\,(85), № 4.-P. 451-503.-[Russian].
- Bojarski B., Gutlyanskii V., Martio O., Ryazanov V. Infinitesimal Geometry of Quasiconformal and bi-Lipschitz Mappings in the Plane.-Zurich: European Math. Soc., 2013.-ix+205 p.
- Dairbekov N. S. Stability in the $C$-Norm of Classes of Solutions of Linear Elliptic Partial Differential Equations. Candidate's dissertation.-Novosibirsk, 1986.-[Russian].
- Dairbekov N. S. The concept of a quasiregular mapping of several $n$-dimensional variables//Dokl. Akad. Nauk, Ross. Akad. Nauk.-1992.-Vol. 324, № 3.-P. 511-514. [Russian]; Engl. transl.: Russ. Acad. Sci., Dokl., Math.-1992.-Vol. 45, № 3.-P. 578-582.
- Dairbekov N. S. Quasiregular mappings of several $n$-dimensional variables//Sib. Mat. Zh.-1993.-Vol. 34, № 4.-P. 87-102.-[Russian]; Engl. transl.: Sib. Math. J.-1993.-Vol. 34, № 4.-P. 669-682.
- Dairbekov N. S. Stability of Classes of Mappings, Beltrami Equations, and Quasiregular Mappings of Several Variables. Doctoral dissertation.-Novosibirsk, 1995.-[Russian].
- Edelen D. G. B. Non Local Variations and Local Invariance of Fields.-N.\,Y.: Elsivier, 1969.-(Modern Anal. and Comp. Methods in Sci. and Engineering. Vol. 19.).
- Egorov A. A. Stability of classes of solutions to partial differential relations constructed by convex and quasiaffine functions//Proc. on geometry and analysis.-Novosibirsk: Izdatel'stvo Instituta Matematiki SO RAN, 2003.-P. 275-288.-[Russian].
- Egorov A. A. Stability of classes of solutions to partial differential relations constructed by quasiconvex functions and null Lagrangians//Equadiff 2003.-Hackensack: World Sci. Publ., 2005.-P. 1065-1067.
- Egorov A. A. Stability of classes of mappings, quasiconvexity, and null Lagrangians//Dokl. Akad. Nauk, Ross. Akad. Nauk.-2007.-Vol. 415, № 6.-P. 730-733.-[Russian]; Engl. transl.: Dokl. Math. 2007.-Vol. 76, № 1.-P. 599-602.
- Egorov A. A. Quasiconvex functions and null Lagrangians in the stability problems of classes of mappings//Sib. Mat. Zh.-2008.-Vol. 49, № 4.-P. 796-812.-[Russian]; English transl.: Sib. Math. J.-2008.-Vol. 49, № 4.-P. 637-649.
- Egorov A. A. Solutions of the Differential Inequality with a Null Lagrangian: Regularity and Removability of Singularities.-2010.-URL: http://arxiv.org/abs/1005.3459.
- Egorov A. A. One integral inequality for solutions of the differential inequality with a null Lagrangian and its application//The collection of the scientific articles of the International school-seminar "Lomonosov's readings in Altai 2012" (Barnaul, 20-23 November, 2012).-Barnaul: ASPA, 2012.-Vol. 1.-P. 284-289.
- Egorov A. A. Solutions of the Differential Inequality with a Null Lagrangian: Higher Integrability and Removability of Singularities. II.-(To appear.).
- Faraco D., Zhong X. A short proof of the self-improving regularity of quasiregular mappings//Proc. Amer. Math. Soc.-2006.-Vol. 134, № 1.-P. 187-192.
- Gao H. Regularity for weakly $(K_1,K_2)$-quasiregular mappings//Science in China. Ser. A.-2003.-Vol. 46, № 4.-P. 499-505.
- Gao H. Regularity for weakly $(K_1,K_2)$-quasiregular mappings//Science in China. Ser. A.-2003.-Vol. 46, № 4.-P. 499-505.
- Gao H., Huang Q., Qian F. Regularity for weakly $(K_1,K_2(x))$-quasiregular mappings of several $n$-di\-men\-sional variables//Front. Math. China.-2011.-Vol. 6, № 2.-P. 241-251.
- Gao H., Li T. On degenerate weakly $(K_1,K_2)$-quasiregular mappings//Acta Math. Sci. Ser. B.-2008.-Vol. 28, № 1.-P. 163-170.
- Gao H., Zhou S., Meng Y. A new inequality for weakly $(K_1,K_2))$-quasiregular mappings//Acta Math. Sin. Engl. Ser.-2007.-Vol. 23, № 12.-P. 2241-2246.
- Gehring F. W. The $L^p$-integrability of the partial derivatives of a quasiconformal mapping//Bull. Am. Math. Soc.-1973.-Vol. 79.-P. 465-466.
- Gol'dshtein V. M. The behavior of mappings with bounded distortion when the coefficient of distortion is close to unity//Sib. Mat. Zh.-1971.-Vol. 17, № 6.-P. 1250-1258.-[Russian]; English transl.: Sib. Math. J.-1971.-Vol. 17, № 6.-P. 900-906.
- Gol'dshtein V. M., Reshetnyak Yu. G. Introduction to the Theory of Functions with Generalized Derivatives, and Quasiconformal Mappings.-M.: Nauka, 1983.-285 p.-[Russian].
- Gol'dshtein V. M., Reshetnyak Yu. G. Quasiconformal Mappings and Sobolev Spaces.-Dordrecht etc.: Kluwer Acad. Publ., 1990.-xix+371 p.-(Math. and its Appl. Soviet Ser. Vol. 54.).
- Gutlyanskii V., Ryazanov V., Srebro U., Yakubov E. The Beltrami Equation. A Geometric Approach.-Berlin: Springer, 2012.-xiii+301 p.-(Developments in Math. Vol. 26.).
- Iwaniec T. On $L^p$-integrability in PDE's and quasiregular mappings for large exponents//Ann. Acad. Sci. Fenn. Ser. AI.-1982.-Vol. 7.-P. 301-322.
- Iwaniec T. $p$-Harmonic tensors and quasiregular mappings//Ann. Math.-1992.-Vol. 136.-P. 651-685.
- Iwaniec T., Martin G. Quasiregular mappings in even dimensions//Acta Math.-1993.-Vol. 170.-P. 29-81.
- Iwaniec T., Martin G. Geometric Function Theory and Non-Linear Analysis. Oxford Math. Monogr.-Oxford: Oxford Univ. Press, 2001.
- Iwaniec T., Migliaccio L., Nania L., Sbordone C. Integrability and removability results for quasiregular mappings in high dimensions//Math. Scand.-1994.-Vol. 75, № 2.-P. 263-279.
- Knops R. J., Stuart C. A. Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity//Arch. Ration. Mech. Anal.-1984.-Vol. 86, № 3.-P. 233-249.
- Kopylov A. P. Stability of classes of multidimensional holomorphic mappings. III. Properties of mappings that are close to holomorphic mappings//Sib. Mat. Zh.-1983.-Vol. 24, № 3.-P. 70-91.-[Russian]; English transl.: Sib. Math. J.-1983.-Vol. 24, № 3.-P. 373-391.
- Kopylov A. P. Stability of Classes of Multidimensional Holomorphic Mappings. Doctoral dissertation.-Novosibirsk, 1984.-[Russian].
- Kopylov A. P. Stability in the $C$-Norm of Classes of Mappings.-Novosibirsk: Nauka, 1990.-[Russian].
- Kopylov A. P. On stability of classes of conformal mappings. I//Sib. Mat. Zh.-1995.-Vol. 36, № 2.-P. 348-369.-[Russian]; English transl.: Sib. Math. J.-1995.-Vol. 36, № 2.-P. 305-323.
- Kopylov A. P. On stability of classes of conformal mappings. III//Sib. Mat. Zh.-1997.-Vol. 38, № 4.-P. 825-842.-[Russian]; English transl.: Sib. Math. J.-1997.-Vol. 38, № 4.-P. 715-729.
- Kristensen J. Finite functionals and Young measures generated by gradients of Sobolev functions. Math. Inst. Technical Univ. of Denmark Mat-Report № 1994-34.-Denmark: Lyngby, 1994.-58 p.
- Krushkal' S. L. Quasiconformal Mappings and Riemann Surfaces.-Novosibirsk: Nauka, 1975.-195 p.-[Russian].
- Krushkal' S. L. Quasiconformal Mappings and Riemann Surfaces. Scripta Series in Math. A Halsted Press Book.-Washington: V. H. Winston \& Sons, N.\,Y. etc.: John Wiley \& Sons, 1979.-xii+319 p.
- Landers A. W. Invariant multiple integrals in the calculus of variations//Contributions to the Calculus of Variations, 1938-1941.-Chicago: Univ. of Chicago Press, 1942.-P. 184-189.
- Lehto O. Remarks on the integrability of the derivatives of quasiconformal mappings//Ann. Acad. Sci. Fenn. Ser. AI.-1965.-Vol. 371.-P. 1-8.
- Lehto O., Virtanen K. I. Quasiconformal Mappings in the Plane. 2nd ed. Grundlehren der Math. Wissenschaften. Vol. 126.-Berlin-Heidelberg-N.\,Y.: Springer-Verlag, 1973.-viii+258 p.
- Martio O., Rickman S., V\"ais\"al\"a J. Topological and metric properties of quasiregular mappings//Ann. Acad. Sci. Fenn. Ser. AI.-1971.-Vol. 488.-31 p.
- Martio O. On the integrability of the derivative of a quasiregular mapping//Math. Scand.-1974.-Vol. 35.-P. 43-48.
- Martio O. Modern Tools in the Theory of Quasiconformal Maps. Textos de Matematica. Serie B. Vol. 27.-Coimbra: Universidade de Coimbra, Departamento de Matematica, 2000.-43 p.
- Martio O., Ryazanov V., Srebro U., Yakubov E. Moduli in Modern Mapping Theory.-N.\,Y.: Springer, 2009.-xii+367 p.
- Meyers N. G., Elcrat A. Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions//Duke Math. J.-1975.-Vol. 42.-P. 121-136.
- Morrey Ch. B. Multiple Integrals in the Calculus of Variations. Grundlehren der Math, Wiss. Vol. 130.-Berlin etc.: Springer-Verlag, 1966.
- Muller S. Variational models for microstructure and phase transitions Calculus of variations and geometric evolution problems//Lectures given at the 2nd session of the Centro Internazionale Matematico Estivo (CIME), Cetraro, Italy, June 15-22, 1996.-Berlin: Springer, 1999.-P. 85-210.-(Lect. Notes Math. Vol. 1713).
- Reshetnyak Yu. G. Stability estimates in Liouville's theorem and $L_p$-integrability of the derivatives of quasiconformal mappings//Sib. Mat. Zh.-1976.-Vol. 17, № 4.-P. 868-896.-[Russian]; English transl.: Sib.\ Math. J.-1976.-Vol. 17, № 4.-P. 653-674.
- Reshetnyak Yu. G. Space Mappings with Bounded Distortion.-Novosibirsk: Nauka, 1982.-288 p.-[Russian].
- Reshetnyak Yu. G. Stability Theorems in Geometry and Analysis.-Novosibirsk: Nauka, 1982.-232 p.-[Russian].
- Reshetnyak Yu. G. Space Mappings with Bounded Distortion.-Providence (R.\,I.): Amer. Math. Soc., 1989.-362 p.-(Transl. of Math. Monogr. Vol. 73.).
- Reshetnyak Yu. G. Stability Theorems in Geometry and Analysis.-Dordrecht: Kluwer Acad. Publ., 1994.-xi+394 p.-(Math. and its Appl. Vol. 304.).
- Reshetnyak Yu. G. Stability Theorems in Geometry and Analysis. 2nd rev. ed.-Novosibirsk: Izdatel'stvo Instituta Matematiki SO RAN, 1996.-424 p.-[Russian].
- Rickman S. Quasiregular Mappings.-Berlin: Springer-Verlag, 1993.-x+213 p.-(Results in Math. and Related Areas (3). Vol. 26.).
- Sokolova T. V. Behavior of nearly homothetic mappings//Mat. Zametki.-1991.-Vol. 50, № 4.-P. 154-156.-[Russian]; English transl.: Math. Notes.-1991.-Vol. 50, № 4.-P. 1089-1090.
- Sokolova T. V. Stability in the Space $W^1_p$ of Homothety Transformations. Candidate's dissertation.-Novosibirsk, 1991.-[Russian].
- Sychev M. Young measure approach to characterization of behaviour of integral functionals on weakly convergent sequences by means of their integrands//Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire.-1998.-Vol. 15.-P. 755-782.
- Tong Y., Gu J. Li Y. A new inequality for weakly $(K_1,K_2)$-quasiregular mappings//J. Inequal. Pure Appl. Math.-2007.-Vol. 8, № 3, Paper № 91.-4 p.
- Vaisala J. Lectures on $n$-Dimensional Quasiconformal Mappings.-Berlin-Heidelberg-N.\,Y.: Springer-Verlag, 1971.-xiv+144 p.
- Vuorinen M. Conformal Geometry and Quasiregular Mappings.-Berlin etc.: Springer-Verlag, 1988.-xix+209 p.-(Lect. Notes Math. Vol. 1319.).