Review of image reconstruction methods in X-ray computed tomography with cone-beam geometry

Бесплатный доступ

The article reflects the main task of the X-ray computed tomography and its mathematical description. Direct and inverse Radon transform are given. The methods of image reconstruction in X-ray computed tomography are presented. Their brief classification are given. The author have reviewed classical problem of two-dimensional computed tomography and basics approaches to its solution. Emphasis is placed on back projection algorithm with filtering convolution. The derivation of the algorithm for parallel and fan-beam reconstruction are given. The analysis of the problem of three-dimensional reconstruction are presented. The author describes the additional conditions imposed on the projection data, the computational efficiency of the algorithms and the quality of the images. The basic trajectory of the X-ray source, providing the condition Tuy, are considered. The article gives an overview of existing methods of three-dimensional reconstruction with cone-beam geometry, their advantages, disadvantages, clinical applications. Their brief classification are given. Approximate algorithms of three-dimensional reconstruction are presented. The Feldkamp algorithm, the extended parallel backprojection, and the advanced single-slice rebinning are described. The author raises the question of developing approaches and methods for obtaining images with three-dimensional reconstruction for cone-beam spiral CT.

Еще

Computed tomography, three-dimensional image reconstruction

Короткий адрес: https://sciup.org/147155262

IDR: 147155262   |   DOI: 10.14529/ctcr180203

Список литературы Review of image reconstruction methods in X-ray computed tomography with cone-beam geometry

  • Симонов, Е.Н. Физика визуализации изображений в рентгеновской компьютерной томографии/Е.Н. Симонов. -Челябинск: Издат. центр ЮУрГУ, 2013. -479 с.
  • Календер, В. Компьютерная томография основы, техника, качество изображений и области клинического использования/В. Календер; пер. с англ. А.В. Кирюшина, А.Е. Соловченко; под ред. В.Е. Синицына. -М.: Техносфера, 2006. -344 с.
  • Тихонов, А.Н. Математические задачи компьютерной томографии/А.Н. Тихонов, В.Я. Арсенин, А.А. Тимонов. -М.: Наука, 1987. -160 с.
  • Пикалов, В.В. Сравнение алгоритмов спиральной томографии/В.В. Пикалов, А.В. Лихачев//Вычислительные методы и программирование. -2004. -Т. 5. -С. 170-183.
  • Лихачев, А.В. Сравнение алгоритма Фельдкампа с алгоритмом синтеза Фурье для трехмерной томографии/А.В. Лихачев//Автометрия. -2006. -Т. 42, № 1 -С. 88-102.
  • Feldkamp, L.A. Practical cone-beam algorithm/L.A. Feldkamp, L.C. Davis, J.W. Kress//J. Opt. Soc. Am. A. -1984. -Vol. 1, iss. 6. -P. 612-619 DOI: 10.1364/JOSAA.1.000612
  • Kachelrie, M. Extended parallel backprojection for standard three-dimensional and phase-correlated four-dimensional axial and spiral cone-beam CT with arbitrary pitch, arbitrary cone-angle, and 100% dose usage/M. Kachelrie, M. Knaup, W.A. Kalender//Medical Physics. -2004. -Vol. 31, no. 6. -P. 1623-1641 DOI: 10.1118/1.1755569
  • Kachelrie, M. Advanced single-slice rebinning in cone-beam spiral CT/M. Kachelrie, S. Schaller, W.A. Kalender//Medical Physics. -2001. -Vol. 27, no. 4. -P. 1033-1041.
Еще
Статья научная