Роль циркадных ритмов в функционировании мужской репродуктивной системы
Автор: Алексеева М.В., Быкова О.В., Шадеркина Анастасия Игоревна, Борисенко Ю.В., Грицкевич Е.Ю., Красняк С.С.
Журнал: Экспериментальная и клиническая урология @ecuro
Рубрика: Андрология
Статья в выпуске: 4 т.17, 2024 года.
Бесплатный доступ
Введение. Циркадные ритмы определяют работу всего организма, включая эндокринные органы, и синтез многих гормонов подчиняется биологическим часам. Мелатонин является гормоном эпифиза и он играет ключевую роль в формировании циркадных ритмов, а тестостерон, являясь основным половым гормоном у мужчин, задействован во многих метаболических процессах в мужском организме, в том числе в функционировании репродуктивной системы. Последние исследования все чаще выявляют связь с бесплодия с нарушениями циркадных ритмов, вызванных внешними факторами.
Мелатонин, часовые гены, тестостерон, эпифиз, стероидогенез
Короткий адрес: https://sciup.org/142243859
IDR: 142243859 | DOI: 10.29188/2222-8543-2024-17-4-90-99
Список литературы Роль циркадных ритмов в функционировании мужской репродуктивной системы
- Vasey C, McBride J, Penta K. Circadian Rhythm Dysregulation and Restoration: The Role of Melatonin. Nutrients 2021;13(10):3480. https://doi.org/10.3390/nu13103480.
- Joseph TT, Schuch V, Hossack DJ, Chakraborty R, Johnson EL. Melatonin: the placental antioxidant and anti-inflammatory. Front Immunol 2024;15:1339304. https://doi.org/10.3389/fimmu.2024.1339304.
- Zitzmann M. Testosterone, mood, behaviour and quality of life. Andrology 2020;8(6):1598-605. https://doi.org/10.1111/andr.12867.
- Rezanezhad B, Borgquist R, Willenheimer R, Elzanaty S. The Association between Serum Testosterone and Risk Factors for Atherosclerosis. Curr Urol 2019;13(2):101-6. https://doi.org/10.1159/000499285.
- Mohammadi-Shemirani P, Chong M, Pigeyre M, Morton RW, Gerstein HC, Paré G. Effects of lifelong testosterone exposure on health and disease using Mendelian randomization. Elife 2020;9:e58914. https://doi.org/10.7554/eLife.58914.
- Bandeira L, Silva BC, Bilezikian JP. Male osteoporosis. Arch Endocrinol Metab 2022;66(5):739-47. https://doi.org/10.20945/2359-3997000000563.
- Xu Q, Shen H, Zhu Y, Zhang J, Shen Z, Jiang J, Zhou J. Causal effects of genetically predicted testosterone on Alzheimer's disease: a two-sample mendelian randomization study. Acta Neurol Belg 2024;124(2):591-601. https://doi.org/10.1007/s13760-023-02426-4.
- Fantus RJ, Alter K, Chang C, Ambulkar SS, Bennett NE, Helfand BT, et al. Characterizing the Epidemiology and Provider Landscape of Male Infertility Care in the United States. Urology 2021;153:169-174. https://doi.org/10.1016/j.urology.2021.04.008.
- Лебедев Г.С., Голубев Н.А., Шадеркин И.А., Шадеркина В.А., Аполихин О.И., Сивков А.В., Комарова В.А. Мужское бесплодие в Российской Федерации: статистические данные за 2000-2018 годы. Экспериментальная и клиническая урология 2019;(4):4-12. [Lebedev G.S., Golubev N.A., Shaderkin I.A., Shaderkina V.A., Apolikhin O.I., Sivkov A.V., Komarova V.A. Male infertility in the Russian Federation: statistical data for 2000-2018. Eksperimental'naya i klinicheskaya urologiya = Experimental and Clinical Urology 2019;(4):4-12. (In Russian)]. https://doi.org/10.29188/2222-8543-2019-11-4-4-12.
- Huang B, Wang Z, Kong Y, Jin M, Ma L. Global, regional and national burden of male infertility in 204 countries and territories between 1990 and 2019: an analysis of global burden of disease study. BMC Public Health 2023;23(1):2195. https://doi.org/10.1186/s12889-023-16793-3.
- Jafari H, Mirzaiinajmabadi K, Roudsari RL, Rakhshkhorshid M. The factors affecting male infertility: A systematic review. Int J Reprod Biomed 2021;19(8):681-8. https://doi.org/10.18502/ijrm.v19i8.9615.
- Lateef OM, Akintubosun MO. Sleep and Reproductive Health. J Circadian Rhythms 2020;18:1. https://doi.org/10.5334/jcr.190.
- Claustrat B, Leston J. Melatonin: Physiological effects in humans. Neurochirurgie 2015;61(2-3):77-84. https://doi.org/10.1016/j.neuchi.2015.03.002.
- Targhazeh N, Reiter RJ, Rahimi M, Qujeq D, Yousefi T, Shahavi MH, Mir SM. Oncostatic activities of melatonin: Roles in cell cycle, apoptosis, and autophagy. Biochimie 2022;202:34-48. https://doi.org/10.1016/j.biochi.2022.06.008.
- Naamneh Elzenaty R, du Toit T, Flück CE. Basics of androgen synthesis and action. Best Pract Res Clin Endocrinol Metab 2022;36(4):101665. https://doi.org/10.1016/j.beem.2022.101665.
- Chakraborty S, Pramanik J, Mahata B. Revisiting steroidogenesis and its role in immune regulation with the advanced tools and technologies. Genes Immun 2021;22(3):125-40. https://doi.org/10.1038/s41435-021-00139-3.
- Chung HJ, Lee SJ, Jang A, Lee CE, Lee DW, Myung SC, Kim JW. Korean Ginseng Berry Extract Enhances the Male Steroidogenesis Enzymes In Vitro and In Vivo. World J Mens Health 2023;41(2):446-59. https://doi.org/10.5534/wjmh.220075.
- Campbell AN, Choi WJ, Chi ES, Orun AR, Poland JC, Stivison EA, et al. Steroidogenic Factor-1 form and function: From phospholipids to physiology. Adv Biol Regul 2024;91:100991. https://doi.org/10.1016/j.jbior.2023.100991.
- Kim H, Kumar S, Lee K. FOXA3, a Negative Regulator of Nur77 Expression and Activity in Testicular Steroidogenesis. Int J Endocrinol 2021;2021:6619447. https://doi.org/10.1155/2021/6619447.
- Motomura N, Yamazaki Y, Gao X, Tezuka Y, Omata K, Ono Y, et al. Visualization of calcium channel blockers in human adrenal tissues and their possible effects on steroidogenesis in the patients with primary aldosteronism (PA). J Steroid Biochem Mol Biol 2022;218:106062. https://doi.org/10.1016/j.jsbmb.2022.106062.
- Liu PY. Light pollution: time to consider testicular effects. Front Toxicol 2024;6:1481385. https://doi.org/10.3389/ftox.2024.1481385.
- Li T, Bai Y, Jiang Y, Jiang K, Tian Y, Wang Z, et al. Potential Effect of the Circadian Clock on Erectile Dysfunction. Aging Dis 2022;13(1):8-23. https://doi.org/10.14336/AD.2021.0728.
- Agrawal P, Singh SM, Able C, Kohn TP, Herati AS. Sleep disorders are associated with testosterone deficiency and erectile dysfunction-a U.S. claims database analysis. Int J Impot Res 2024;36(1):78-82. https://doi.org/10.1038/s41443-022-00649-2.
- Rodriguez KM, Kohn TP, Kohn JR, Sigalos JT, Kirby EW, Pickett SM, et al. Shift Work Sleep Disorder and Night Shift Work Significantly Impair Erectile Function. J Sex Med 2020;17(9):1687-93. https://doi.org/10.1016/j.jsxm.2020.06.009.
- Bracci M, Zingaretti L, Martelli M, Lazzarini R, Salvio G, Amati M, et al. Alterations in Pregnenolone and Testosterone Levels in Male Shift Workers. Int J Environ Res Public Health 2023;20(4):3195. https://doi.org/10.3390/ijerph20043195.
- H Hassan M, A El-Taieb M, N Fares N, M Fayed H, Toghan R, M Ibrahim H. Men with idiopathic oligoasthenoteratozoospermia exhibit lower serum and seminal plasma melatonin levels: Comparative effect of night-light exposure with fertile males. Exp Ther Med 2020;20(1):235-42. https://doi.org/10.3892/etm.2020.8678.
- Demirkol MK, Yıldırım A, Gıca Ş, Doğan NT, Resim S. Evaluation of the effect of shift working and sleep quality on semen parameters in men attending infertility clinic. Andrologia 2021;53(8):e14116. https://doi.org/10.1111/and.14116.
- Balasubramanian A, Kohn TP, Santiago JE, Sigalos JT, Kirby EW, Hockenberry MS, et al. Increased Risk of Hypogonadal Symptoms in Shift Workers With Shift Work Sleep Disorder. Urology 2020;138:52-9. https://doi.org/10.1016/j.urology.2019.10.040.
- Harding BN, Castaño-Vinyals G, Palomar-Cros A, Papantoniou K, Espinosa A, Skene DJ, et al. Changes in melatonin and sex steroid hormone production among men as a result of rotating night shift work the HORMONIT study. Scand J Work Environ Health 2022;48(1):41-51. https://doi.org/10.5271/sjweh.3991.
- Jankowski KS, Zajenkowski M, Górniak J. Chronotype in relation to free and total testosterone in men. Chronobiol Int 2024;41(6):924-8 https://doi.org/10.1080/07420528.2024.2360719.
- Ichikawa T, Kobayashi T, Hachiya T, Ikehata Y, Isotani S, Ide H, Horie S. Association of genetically determined chronotype with circulating testosterone: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024;15:1264410. https://doi.org/10.3389/fendo.2024.1264410.
- Gica S, Demirkol MK, Yildirim A, Temiz Dogan N, Resim S. Evening type negatively affects semen quality by deteriorating sperm morphology: Results from an infertility clinic. Eur J Obstet Gynecol Reprod Biol 2023;291:190-5. https://doi.org/10.1016/j.ejogrb.2023.10.019.
- Shlykova N, Davidson E, Krakowsky Y, Bolanos J, Traish A, Morgentaler A. Absent Diurnal Variation in Serum Testosterone in Young Men with Testosterone Deficiency. J Urol 2020;203(4):817-23. https://doi.org/10.1097/JU.0000000000000630.
- Novaes LF, Flores JM, Benfante N, Schofield E, Katz DJ, Nelson CJ, Mulhall JP. Analysis of diurnal variation in serum testosterone levels in men with symptoms of testosterone deficiency. J Sex Med 2024;21(5):408-13. https://doi.org/10.1093/jsxmed/qdae026.
- Lateef OM, Akintubosun MO. Sleep and Reproductive Health. J Circadian Rhythms 2020;18:1. https://doi.org/10.5334/jcr.190.
- Pałka T, Pajor P, Tyka AK, Pilch W, Cebula A, Teległów A, et al. Time-of-Day Effects on Anaerobic Power and Concentration of Selected Hormones in Blind Men. Int J Environ Res Public Health 2021;18(17):9353. https://doi.org/10.3390/ijerph18179353.
- Morssinkhof MWL, Zwager A, van der Tuuk K, den Heijer M, van der Werf YD, Stenvers DJ, Broekman BFP. Chronotype changes after sex hormone use: A prospective cohort study in transgender users of gender-affirming hormones. Chronobiol Int 2024;41(5):658-68. https://doi.org/10.1080/07420528.2024.2339989.
- Wang F, Xie N, Wu Y, Zhang Q, Zhu Y, Dai M, et al. Association between circadian rhythm disruption and polycystic ovary syndrome. Fertil Steril 2021;115(3):771-81. https://doi.org/10.1016/j.fertnstert.2020.08.1425.
- Zhou X, Huddleston H. Let there be light: does circadian rhythm disruption cause polycystic ovary syndrome? Fertil Steril 2021;115(3):607-8. https://doi.org/10.1016/j.fertnstert.2021.01.050.
- Zafari Zangeneh F. Deregulated Brain's Central Clock Management on Sleep-Wake Behavior in Women With Polycystic Ovary Syndrome: Melatonin & Sleep Pattern. J Family Reprod Health 2022;16(4):229-38. https://doi.org/10.18502/jfrh.v16i4.11348.
- Johnson BS, Krishna MB, Padmanabhan RA, Pillai SM, Jayakrishnan K, Laloraya M. Derailed peripheral circadian genes in polycystic ovary syndrome patients alters peripheral conversion of androgens synthesis. Hum Reprod 2022;37(8):1835-55. https://doi.org/10.1093/humrep/deac139.
- Liu PY, Reddy RT. Sleep, testosterone and cortisol balance, and ageing men. Rev Endocr Metab Disord 2022;23(6):1323-39. https://doi.org/10.1007/s11154-022-09755-4.
- Ezzati M, Velaei K, Kheirjou R. Melatonin and its mechanism of action in the female reproductive system and related malignancies. Mol Cell Biochem 2021;476(8):3177-90. https://doi.org/10.1007/s11010-021-04151-z.
- Cardenas-Padilla AJ, Jimenez-Trejo F, Cerbon M, Chavez-Garcia A, Cruz-Cano NB, Martinez-Torres M, et al. Sperm melatonin receptors, seminal plasma melatonin and semen freezability in goats. Theriogenology 2024;225:98-106. https://doi.org/10.1016/j.theriogenology.2024.05.034.
- Cox KH, Takahashi JS. Circadian clock genes and the transcriptional architecture of the clock mechanism. J Mol Endocrinol 2019;63(4):R93-R102. https://doi.org/10.1530/JME-19-0153.
- Okuliarova M, Dzirbikova Z, Rumanova VS, Foppen E, Kalsbeek A, Zeman M. Disrupted circadian control of hormonal rhythms and anticipatory thirst by dim light at night. Neuroendocrinology 2022;112(11):1116-28. https://doi.org/10.1159/000524235.
- Liu Q, Wang H, Wang H, Li N, He R, Liu Z. Per1/Per2 Disruption reduces testosterone synthesis and impairs fertility in elderly male mice. Int J Mol Sci 2022;23(13):7399. https://doi.org/10.3390/ijms23137399.
- Xiao Y, Zhao L, Li W, Wang X, Ma T, Yang L, Gao L, et al. Circadian clock gene BMAL1 controls testosterone production by regulating steroidogenesis-related gene transcription in goat Leydig cells. J Cell Physiol 2021;236(9):6706-25. https://doi.org/10.1002/jcp.30334.
- Huang G, Ma H, Gan X, Li S, Ma X, Chen S, et al. Circadian misalignment leads to changes in cortisol rhythms, blood biochemical variables and serum miRNA profiles. Biochem Biophys Res Commun 2021;567:9-16. https://doi.org/10.1016/j.bbrc.2021.06.015.
- Brum MCB, Senger MB, Schnorr CC, Ehlert LR, Rodrigues TDC. Effect of night-shift work on cortisol circadian rhythm and melatonin levels. Sleep Sci 2022;15(2):143-8. https://doi.org/10.5935/1984-0063.20220034.
- Sciarra F, Franceschini E, Campolo F, Gianfrilli D, Pallotti F, Paoli D, et al. Disruption of Circadian Rhythms: A Crucial Factor in the Etiology of Infertility. Int J Mol Sci 2020;21(11):3943. https://doi.org/10.3390/ijms21113943.
- Yang L, Ma T, Zhao L, Jiang H, Zhang J, Liu D, et al. Circadian regulation of apolipoprotein gene expression affects testosterone production in mouse testis. Theriogenology 2021;174:9-19. https://doi.org/10.1016/j.theriogenology.2021.06.023.
- Yang M, Guan S, Tao J, Zhu K, Lv D, Wang J, et al. Melatonin promotes male reproductive performance and increases testosterone synthesis in mammalian Leydig cells. Biol Reprod 2021;104(6):1322-36. https://doi.org/10.1093/biolre/ioab046.
- Budiyanto A, Hartanto S, Widayanti R, Kurnianto H, Wardi W, Haryanto B, et al. Impact of melatonin administration on sperm quality, steroid hormone levels, and testicular blood flow parameters in small ruminants: A meta-analysis. Vet World 2024;17(4):911-21. https://doi.org/10.14202/vetworld.2024.911-921.
- Qi Q, Feng L, Liu J, Xu D, Wang G, Pan X. Melatonin Alleviates BPA-Induced Testicular Apoptosis and Endoplasmic Reticulum Stress. Front Biosci (Landmark Ed) 2024;29(3):95. https://doi.org/10.31083/j.bl2903095.
- Coelho LA, Andrade-Silva J, Motta-Teixeira LC, Amaral FG, Reiter RJ, Cipolla-Neto J. The Absence of Pineal Melatonin Abolishes the Daily Rhythm of Tph1 (Tryptophan Hydroxylase 1), Asmt (Acetylserotonin O-Methyltransferase), and Aanat (Aralkylamine NAcetyltransferase) mRNA Expressions in Rat Testes. Mol Neurobiol 2019;56(11):7800-9. https://doi.org/10.1007/s12035-019-1626-y.
- Ogo FM, Siervo GEML, de Moraes AMP, Machado KGB, Scarton SRDS, Guimarães ATB, et al. Extended light period in the maternal circadian cycle impairs the reproductive system of the rat male offspring. J Dev Orig Health Dis 2021;12(4):595-602. https://doi.org/10.1017/S2040174420000975.
- Кондакова Л.И., Калашникова С.А., Полякова Л.В., Букатин М.В. Морфофункциональные изменения семенников крыс при преждевременном старении, вызванном темновой депривацией. Вестник Волгоградского государственного медицинского университета 2022;19(4):123-7. [Kondakova L.I., Kalashnikova S.A., Polyakova L.V., Bukatin M.V. Morphofunctional changes in rat testes during premature aging caused by dark deprivation. Vestnik Volgogradskogo gosudarstvennogo meditsinskogo universiteta = Bulletin of Volgograd State Medical University 2022;19(4):123-7. (In Russian)]. https://doi.org/10.19163/1994-9480-2022-19-4-123-127.
- Özgür ME, Ulu A, Noma SAA, Özcan İ, Balcıoğlu S, Ateş B, Köytepe S. Melatonin protects sperm cells of Capoeta trutta from toxicity of titanium dioxide nanoparticles. Environ Sci Pollut Res Int 2020;27(15):17843-53. https://doi.org/10.1007/s11356-020-08273-7.
- Samir H, Mandour AS, Radwan F, Ahmed AE, Momenah MA, Aldawood NA, et al. Effect of acute melatonin injection on metabolomic and testicular artery hemodynamic changes and circulating hormones in shiba goats under sub-tropical environmental conditions. Animals (Basel) 2023;13(11):1794. https://doi.org/10.3390/ani13111794.
- Jha NA, Taufique SKT, Kumar V. Constant light and pinealectomy disrupt daily rhythm in song production and negatively impact reproductive performance in zebra finches. Photochem Photobiol Sci 2024;23(4):731-46. https://doi.org/10.1007/s43630-024-00548-z.
- Bielska A, Skwarska A, Kretowski A, Niemira M. The Role of Androgen Receptor and microRNA Interactions in Androgen-Dependent Diseases. Int J Mol Sci 2022;23(3):1553. https://doi.org/10.3390/ijms23031553.
- Zhang Y, Chen M, Chen H, Mi S, Wang C, Zuo H, et al. Testosterone reduces hippocampal synaptic damage in an androgen receptor-independent manner. J Endocrinol 2023;260(2):e230114. https://doi.org/10.1530/JOE-23-0114.
- Ubba V, Joseph S, Awe O, Jones D, Dsilva MK, Feng M, et al. Reproductive Profile of Neuronal Androgen Receptor Knockout Female Mice With a Low Dose of DHT. Endocrinology 2024;165(3):bqad199. https://doi.org/10.1210/endocr/bqad199.
- Low KL, Tomm RJ, Ma C, Tobiansky DJ, Floresco SB, Soma KK. Effects of aging on testosterone and androgen receptors in the mesocorticolimbic system of male rats. Horm Behav 2020;120:104689. https://doi.org/10.1016/j.yhbeh.2020.104689.
- Tang S, Xiao Z, Lin F, Liang X, Ma X, Wu J, et al. Joint effect of testosterone and neurofilament light chain on cognitive decline in men: The Shanghai Aging Study. Alzheimers Dement 2024;20(8):5290-8. https://doi.org/10.1002/alz.13889.
- Simões-Henriques CF, Rodrigues-Neves AC, Sousa FJ, Gaspar R, Almeida I, Baptista FI, et al. Neonatal testosterone voids sexually differentiated microglia morphology and behavior. Front Endocrinol (Lausanne) 2023;14:1102068. https://doi.org/10.3389/fendo.2023.1102068.
- Esperante IJ, Meyer M, Banzan C, Kruse MS, Lima A, Roig P, et al. Testosterone Reduces Myelin Abnormalities in the Wobbler Mouse Model of Amyotrophic Lateral Sclerosis. Biomolecules 2024;14(4):428. https://doi.org/10.3390/biom14040428.
- Indirli R, Lanzi V, Arosio M, Mantovani G, Ferrante E. The association of hypogonadism with depression and its treatments. Front Endocrinol (Lausanne) 2023;14:1198437. https://doi.org/10.3389/fendo.2023.1198437.
- Hauger RL, Saelzler UG, Pagadala MS, Panizzon MS. The role of testosterone, the androgen receptor, and hypothalamic-pituitary-gonadal axis in depression in ageing Men. Rev Endocr Metab Disord 2022;23(6):1259-73. https://doi.org/10.1007/s11154-022-09767-0.
- Fester L, Rune GM. Sex neurosteroids: Hormones made by the brain for the brain. Neurosci Lett 2021;753:135849. https://doi.org/10.1016/j.neulet.2021.135849.
- Bakalar D, O'Reilly JJ, Lacaille H, Salzbank J, Ellegood J, Lerch JP, et al. Lack of placental neurosteroid alters cortical development and female somatosensory function. Front Endocrinol (Lausanne) 2022;13:972033. https://doi.org/10.3389/fendo.2022.972033.
- Garcia-Segura LM, Méndez P, Arevalo MA, Azcoitia I. Neuroestradiol and neuronal development: Not an exclusive male tale anymore. Front Neuroendocrinol 2023;71:101102. https://doi.org/10.1016/j.yfrne.2023.101102.
- Shaw JC, Dyson RM, Palliser HK, Sixtus RP, Barnes H, Pavy CL, et al. Examining neurosteroid-analogue therapy in the preterm neonate for promoting hippocampal neurodevelopment. Front Physiol 2022;13:871265. https://doi.org/10.3389/fphys.2022.871265.
- Peltier MR, Verplaetse TL, Mineur YS, Gueorguieva R, Petrakis I, Cosgrove KP, et al. Sex differences in progestogenand androgen-derived neurosteroids in vulnerability to alcohol and stress-related disorders. Neuropharmacology 2021;187:108499. https://doi.org/10.1016/j.neuropharm.2021.108499.
- Tozzi A, Bellingacci L, Pettorossi VE. Rapid estrogenic and androgenic neurosteroids effects in the induction of long-term synaptic changes: implication for early memory formation. Front Neurosci 2020;14:572511. https://doi.org/10.3389/fnins.2020.572511.
- Crombie GK, Palliser HK, Shaw JC, Hodgson DM, Walker DW, Hirst JJ. Neurosteroidbased intervention using Ganaxolone and Emapunil for improving stress-induced myelination deficits and neurobehavioural disorders. Psychoneuroendocrinology 2021;133:105423. https://doi.org/10.1016/j.psyneuen.2021.105423.
- Munley KM, Trinidad JC, Deyoe JE, Adaniya CH, Nowakowski AM, Ren CC, et al. Melatonin-dependent changes in neurosteroids are associated with increased aggression in a seasonally breeding rodent. J Neuroendocrinol 2021;33(3):e12940. https://doi.org/10.1111/jne.12940.
- Munley KM, Sinkiewicz DM, Szwed SM, Demas GE. Sex and seasonal differences in neural steroid sensitivity predict territorial aggression in Siberian hamsters. Horm Behav 2023;154:105390. https://doi.org/10.1016/j.yhbeh.2023.105390.